992 resultados para formation à distance
Resumo:
In a dense multi-hop network of mobile nodes capable of applying adaptive power control, we consider the problem of finding the optimal hop distance that maximizes a certain throughput measure in bit-metres/sec, subject to average network power constraints. The mobility of nodes is restricted to a circular periphery area centered at the nominal location of nodes. We incorporate only randomly varying path-loss characteristics of channel gain due to the random motion of nodes, excluding any multi-path fading or shadowing effects. Computation of the throughput metric in such a scenario leads us to compute the probability density function of random distance between points in two circles. Using numerical analysis we discover that choosing the nearest node as next hop is not always optimal. Optimal throughput performance is also attained at non-trivial hop distances depending on the available average network power.
Resumo:
We present a new approach to spoken language modeling for language identification (LID) using the Lempel-Ziv-Welch (LZW) algorithm. The LZW technique is applicable to any kind of tokenization of the speech signal. Because of the efficiency of LZW algorithm to obtain variable length symbol strings in the training data, the LZW codebook captures the essentials of a language effectively. We develop two new deterministic measures for LID based on the LZW algorithm namely: (i) Compression ratio score (LZW-CR) and (ii) weighted discriminant score (LZW-WDS). To assess these measures, we consider error-free tokenization of speech as well as artificially induced noise in the tokenization. It is shown that for a 6 language LID task of OGI-TS database with clean tokenization, the new model (LZW-WDS) performs slightly better than the conventional bigram model. For noisy tokenization, which is the more realistic case, LZW-WDS significantly outperforms the bigram technique
Resumo:
In the present investigation, various kinds of textures, namely, unidirectional, 8-ground, and random were attained on the die surfaces. Roughness of the textures was varied using different grits of emery papers or polishing powders. Then pins made of Al-4Mg alloys were slid against steel plates at various numbers of cycles, namely, 1, 3, 5, 10 and 20 using pin-on-plate reciprocating sliding tester. Tests were conducted at a sliding velocity of 2 minis in ambient conditions under both dry and lubricated conditions. A constant normal load of 35 N was applied in the tests. The morphologies of the worn surfaces of the pins and the formation of transfer layer on the counter surfaces were observed using a scanning electron microscope. Surface roughness parameters of the plates were measured using an optical profilometer. In the experiments, it was observed that the coefficient of friction and formation of the transfer layer depend on the die surface textures under both dry and lubricated conditions. More specifically, the coefficient of friction decreases for unidirectional and 8-ground surfaces while for random surfaces it increases with number of cycles. However, the coefficient of friction is highest for the sliding perpendicular to the unidirectional textures and least for the random textures under both dry and lubricated conditions. The difference in friction values between these two surfaces decreases with increasing number of cycles. The variation in the coefficient of friction under both dry and lubrication conditions is attributed to the change in texture of the surfaces during sliding. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The dry sliding wear and friction behaviour of A356 Al alloy and its composites containing 10 and 20 vol.% SiC(P) have been studied using pin-on-disc set up. In these tests, A356 Al alloy and its composites are used as disc whereas brake pad was used in the form of pins. Wear tests were carried out at a load of 192 N and the sliding speed was varied from 1 to 5 m/s. Tests were done for a sliding distance of 15 km. The effects of sliding velocity on the wear rate, coefficient of friction and nature of tribolayers formed on discs have been studied. Wear rates of composites as calculated by weight loss method, found to be negative at sliding speed of more than 2 m/s. Worn surfaces of pins and discs have been analyzed using scanning electron microscope. SEM and EDAX analysis of worn surfaces of composite discs showed formation of tribolayers, consisting of mixture of oxides of Al, Si, Cu, Ca, Ba, Mg, and Fe. In these layers, copper and barium content found to be increase with sliding speed in the case of composites. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In the present investigation, various kinds of surface textures were attained on the steel plates. Roughness of the textures was varied using various grinding or polishing methods. The surface textures were characterized in terms of roughness parameters using an optical profilometer. Then experiments were conducted using an inclined pin-on-plate sliding apparatus to identify the role of surface texture and its roughness parameters on coefficient of friction and transfer layer formation. In the experiments, a soft polymer (polypropylene) was used for the pin and hardened steel was used for the plate. Experiments were conducted at a sliding velocity of 2 minis in ambient conditions under both dry and lubricated conditions. The normal load was varied from 1 to 120 N during the tests. The morphologies of the worn surfaces of the pins and the formation of a transfer layer on the steel plate surfaces were observed using a scanning electron microscope. Based on the experimental results, it was observed that the transfer layer formation and the coefficient of friction along with its two components, namely adhesion and plowing, were controlled by the surface texture of the harder mating surfaces and were less dependent of surface roughness (R(a)) of the harder mating surfaces. The effect of surface texture on the friction was attributed to the variation of the plowing component of friction for different surfaces. Among the various surface roughness parameters studied, the mean slope of the profile, Delta(a), was found to most accurately characterize variations in the friction and wear behavior. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The standard free energies of formation of zinc aluminate and chromite were determined by measuring the oxygen potential over a solid CuZn alloy, containing 10 at.−% Zn, in equilibrium with ZnO, ZnAl2O4+Al2O3(χ) and ZnCr2O4+Cr2O3, in the temperature range 700–900°C. The oxygen potential was monitored by means of a solid oxide galvanic cell in which a Y2O3 ThO2 pellet was sandwiched between a CaOZrO2 crucible and tube. The temperature dependence of the free energies of formation of the interoxidic compounds can be represented by the equations, The heat of formation of the spinels calculated from the measurements by the “Second Law method” is found to be in good agreement with calorimetrically determined values. Using an empirical correlation for the entropy of formation of cubic spinel phases from oxides with rock-salt and corundum structures and the measured high temperature cation distribution in ZnAl2O4, the entropy of transformation of ZnO from wurtzite to rock-salt structure is evaluated.
Resumo:
A new composition path, Xi-Xj=constant, is suggested for the semi-empirical calculation of the thermodynamic properties of ternary ‘substitutional’ solutions from binary data, when the binary systems show deviations from the regular solution model. A comparison is made between the results obtained for integral and partial properties using this composition path and those calculated employing other composition paths suggested in literature. It appears that the best estimate of the ternary properties is obtained when binary data at compositions closest to the ternary composition are used.