919 resultados para forecast


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we investigate the role of judgement in the formation of forecasts in commercial property markets. The investigation is based on interview surveys with the majority of UK forecast producers, who are using a range of inputs and data sets to form models to predict an array of variables for a range of locations. The findings suggest that forecasts need to be acceptable to their users (and purchasers) and consequently forecasters generally have incentives to avoid presenting contentious or conspicuous forecasts. Where extreme forecasts are generated by a model, forecasters often engage in ‘self‐censorship’ or are ‘censored’ following in‐house consultation. It is concluded that the forecasting process is significantly more complex than merely carrying out econometric modelling, forecasts are mediated and contested within organisations and that impacts can vary considerably across different organizational contexts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Whilst the vast majority of the research on property market forecasting has concentrated on statistical methods of forecasting future rents, this report investigates the process of property market forecast production with particular reference to the level and effect of judgemental intervention in this process. Expectations of future investment performance at the levels of individual asset, sector, region, country and asset class are crucial to stock selection and tactical and strategic asset allocation decisions. Given their centrality to investment performance, we focus on the process by which forecasts of rents and yields are generated and expectations formed. A review of the wider literature on forecasting suggests that there are strong grounds to expect that forecast outcomes are not the result of purely mechanical calculations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Given the significance of forecasting in real estate investment decisions, this paper investigates forecast uncertainty and disagreement in real estate market forecasts. It compares the performance of real estate forecasters with non-real estate forecasters. Using the Investment Property Forum (IPF) quarterly survey amongst UK independent real estate forecasters and a similar survey of macro-economic and capital market forecasters, these forecasts are compared with actual performance to assess a number of forecasting issues in the UK over 1999-2004, including forecast error, bias and consensus. The results suggest that both groups are biased, less volatile compared to market returns and inefficient in that forecast errors tend to persist. The strongest finding is that forecasters display the characteristics associated with a consensus indicating herding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper uses data provided by three major real estate advisory firms to investigate the level and pattern of variation in the measurement of historic real estate rental values for the main European office centres. The paper assesses the extent to which the data providing organizations agree on historic market performance in terms of returns, risk and timing and examines the relationship between market maturity and agreement. The analysis suggests that at the aggregate level and for many markets, there is substantial agreement on direction, quantity and timing of market change. However, there is substantial variability in the level of agreement among cities. The paper also assesses whether the different data sets produce different explanatory models and market forecast. It is concluded that, although disagreement on the direction of market change is high for many market, the different data sets often produce similar explanatory models and predict similar relative performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent research has suggested that forecast evaluation on the basis of standard statistical loss functions could prefer models which are sub-optimal when used in a practical setting. This paper explores a number of statistical models for predicting the daily volatility of several key UK financial time series. The out-of-sample forecasting performance of various linear and GARCH-type models of volatility are compared with forecasts derived from a multivariate approach. The forecasts are evaluated using traditional metrics, such as mean squared error, and also by how adequately they perform in a modern risk management setting. We find that the relative accuracies of the various methods are highly sensitive to the measure used to evaluate them. Such results have implications for any econometric time series forecasts which are subsequently employed in financial decisionmaking.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The performance of various statistical models and commonly used financial indicators for forecasting securitised real estate returns are examined for five European countries: the UK, Belgium, the Netherlands, France and Italy. Within a VAR framework, it is demonstrated that the gilt-equity yield ratio is in most cases a better predictor of securitized returns than the term structure or the dividend yield. In particular, investors should consider in their real estate return models the predictability of the gilt-equity yield ratio in Belgium, the Netherlands and France, and the term structure of interest rates in France. Predictions obtained from the VAR and univariate time-series models are compared with the predictions of an artificial neural network model. It is found that, whilst no single model is universally superior across all series, accuracy measures and horizons considered, the neural network model is generally able to offer the most accurate predictions for 1-month horizons. For quarterly and half-yearly forecasts, the random walk with a drift is the most successful for the UK, Belgian and Dutch returns and the neural network for French and Italian returns. Although this study underscores market context and forecast horizon as parameters relevant to the choice of the forecast model, it strongly indicates that analysts should exploit the potential of neural networks and assess more fully their forecast performance against more traditional models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we investigate the role of judgement in the formation of forecasts in commercial real estate markets. Based on interview surveys with the majority of forecast producers, we find that real estate forecasters are using a range of inputs and data sets to form models to predict an array of variables for a range of locations. The findings suggest that forecasts need to be acceptable to their users (and purchasers) and consequently forecasters generally have incentives to avoid presenting contentious or conspicuous forecasts. Where extreme forecasts are generated by a model, forecasters often engage in ‘self-censorship’ or are ‘censored’ following in-house consultation. It is concluded that the forecasting process is more complex than merely carrying out econometric modelling and that the impact of the influences within this process vary considerably across different organizational contexts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An important part of strategic planning’s purpose should be to attempt to forecast the future, not simply to belatedly respond to events, or accept the future as inevitable. This paper puts forward a conceptual approach for seeking to achieve these aims and uses the Bournemouth and Poole area in Dorset as a vehicle for applying the basic methodology. The area has been chosen because of the significant issues that it currently faces in planning terms; and its future development possibilities. In order that alternative future choices for the area – different ‘developmental trajectories’ – can be evaluated, they must be carefully and logically constructed. Four Futures for Bournemouth/Poole have been put forward; they are titled and colour-coded: Future One is Maximising Growth – Golden Prospect which seeks to achieve the highest level of economic prosperity of the area; Future Two is Incremental Growth – Solid Silver which attempts to facilitate a steady, continuing, controlled pattern of the development for the area; Future Three is Steady State – Cobalt Blue which suggests that people in the area could be more concerned with preserving their quality of life in terms of their leisure and recreation rather than increasing wealth; Future Four is Environment First – Jade Green which makes the area’s environmental protection its top priority even at the possible expense of economic prosperity. The scenarios proposed here are not sacrosanct. Nor are they simply confined to the Bournemouth and Poole area. In theory, suitably modified, they could use in a variety of different contexts. Consideration of the scenarios – wherever located - might then generate other, additional scenarios. These are called hybrids, alloys and amalgams. Likewise it might identify some of them as inappropriate or impossible. Most likely, careful consideration of the scenarios will suggest hybrid scenarios, in which features from different scenarios are combined to produce alternative or additional futures for consideration. The real issue then becomes how best to fashion such a future for the particular area under consideration

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper examines the significance of widely used leading indicators of the UK economy for predicting the cyclical pattern of commercial real estate performance. The analysis uses monthly capital value data for UK industrials, offices and retail from the Investment Property Databank (IPD). Prospective economic indicators are drawn from three sources namely, the series used by the US Conference Board to construct their UK leading indicator and the series deployed by two private organisations, Lombard Street Research and NTC Research, to predict UK economic activity. We first identify turning points in the capital value series adopting techniques employed in the classical business cycle literature. We then estimate probit models using the leading economic indicators as independent variables and forecast the probability of different phases of capital values, that is, periods of declining and rising capital values. The forecast performance of the models is tested and found to be satisfactory. The predictability of lasting directional changes in property performance represents a useful tool for real estate investment decision-making.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Satellite measurements and numerical forecast model reanalysis data are used to compute an updated estimate of the cloud radiative effect on the global multi-annual mean radiative energy budget of the atmosphere and surface. The cloud radiative cooling effect through reflection of shortwave radiation dominates over the longwave heating effect, resulting in a net cooling of the climate system of –21 Wm-2. The shortwave radiative effect of cloud is primarily manifest as a reduction in the solar radiation absorbed at the surface of -53 Wm-2. Clouds impact longwave radiation by heating the moist tropical atmosphere (up to around 40 Wm-2 for global annual means) while enhancing the radiative cooling of the atmosphere over other regions, in particular higher latitudes and sub-tropical marine stratocumulus regimes. While clouds act to cool the climate system during the daytime, the cloud greenhouse effect heats the climate system at night. The influence of cloud radiative effect on determining cloud feedbacks and changes in the water cycle are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The consistency of ensemble forecasts from three global medium-range prediction systems with the observed transition behaviour of a three-cluster model of the North Atlantic eddy-driven jet is examined. The three clusters consist of a mid jet cluster taken to represent an undisturbed jet and south and north jet clusters representing southward and northward shifts of the jet. The ensemble forecasts span a period of three extended winters (October–February) from October 2007–February 2010. The mean probabilities of transitions between the clusters calculated from the ensemble forecasts are compared with those calculated from a 23-extended-winter climatology taken from the European Centre for Medium-Range Weather Forecasts 40-Year Re-analysis (ERA40) dataset. No evidence of a drift with increasing lead time of the ensemble forecast transition probabilities towards values inconsistent with the 23-extended-winter climatology is found. The ensemble forecasts of transition probabilities are found to have positive Brier Skill at 15 day lead times. It is found that for the three-extended-winter forecast set, probabilistic forecasts initialized in the north jet cluster are generally less skilful than those initialized in the other clusters. This is consistent with the shorter persistence time-scale of the north jet cluster observed in the ERA40 23-extended-winter climatology. Copyright © 2011 Royal Meteorological Society

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During April-May 2010 volcanic ash clouds from the Icelandic Eyjafjallajökull volcano reached Europe causing an unprecedented disruption of the EUR/NAT region airspace. Civil aviation authorities banned all flight operations because of the threat posed by volcanic ash to modern turbine aircraft. New quantitative airborne ash mass concentration thresholds, still under discussion, were adopted for discerning regions contaminated by ash. This has implications for ash dispersal models routinely used to forecast the evolution of ash clouds. In this new context, quantitative model validation and assessment of the accuracies of current state-of-the-art models is of paramount importance. The passage of volcanic ash clouds over central Europe, a territory hosting a dense network of meteorological and air quality observatories, generated a quantity of observations unusual for volcanic clouds. From the ground, the cloud was observed by aerosol lidars, lidar ceilometers, sun photometers, other remote-sensing instru- ments and in-situ collectors. From the air, sondes and multiple aircraft measurements also took extremely valuable in-situ and remote-sensing measurements. These measurements constitute an excellent database for model validation. Here we validate the FALL3D ash dispersal model by comparing model results with ground and airplane-based measurements obtained during the initial 14e23 April 2010 Eyjafjallajökull explosive phase. We run the model at high spatial resolution using as input hourly- averaged observed heights of the eruption column and the total grain size distribution reconstructed from field observations. Model results are then compared against remote ground-based and in-situ aircraft-based measurements, including lidar ceilometers from the German Meteorological Service, aerosol lidars and sun photometers from EARLINET and AERONET networks, and flight missions of the German DLR Falcon aircraft. We find good quantitative agreement, with an error similar to the spread in the observations (however depending on the method used to estimate mass eruption rate) for both airborne and ground mass concentration. Such verification results help us understand and constrain the accuracy and reliability of ash transport models and it is of enormous relevance for designing future operational mitigation strategies at Volcanic Ash Advisory Centers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem of state estimation occurs in many applications of fluid flow. For example, to produce a reliable weather forecast it is essential to find the best possible estimate of the true state of the atmosphere. To find this best estimate a nonlinear least squares problem has to be solved subject to dynamical system constraints. Usually this is solved iteratively by an approximate Gauss–Newton method where the underlying discrete linear system is in general unstable. In this paper we propose a new method for deriving low order approximations to the problem based on a recently developed model reduction method for unstable systems. To illustrate the theoretical results, numerical experiments are performed using a two-dimensional Eady model – a simple model of baroclinic instability, which is the dominant mechanism for the growth of storms at mid-latitudes. It is a suitable test model to show the benefit that may be obtained by using model reduction techniques to approximate unstable systems within the state estimation problem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerical weather prediction (NWP) centres use numerical models of the atmospheric flow to forecast future weather states from an estimate of the current state. Variational data assimilation (VAR) is used commonly to determine an optimal state estimate that miminizes the errors between observations of the dynamical system and model predictions of the flow. The rate of convergence of the VAR scheme and the sensitivity of the solution to errors in the data are dependent on the condition number of the Hessian of the variational least-squares objective function. The traditional formulation of VAR is ill-conditioned and hence leads to slow convergence and an inaccurate solution. In practice, operational NWP centres precondition the system via a control variable transform to reduce the condition number of the Hessian. In this paper we investigate the conditioning of VAR for a single, periodic, spatially-distributed state variable. We present theoretical bounds on the condition number of the original and preconditioned Hessians and hence demonstrate the improvement produced by the preconditioning. We also investigate theoretically the effect of observation position and error variance on the preconditioned system and show that the problem becomes more ill-conditioned with increasingly dense and accurate observations. Finally, we confirm the theoretical results in an operational setting by giving experimental results from the Met Office variational system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A particle filter is a data assimilation scheme that employs a fully nonlinear, non-Gaussian analysis step. Unfortunately as the size of the state grows the number of ensemble members required for the particle filter to converge to the true solution increases exponentially. To overcome this Vaswani [Vaswani N. 2008. IEEE Trans Signal Process 56:4583–97] proposed a new method known as mode tracking to improve the efficiency of the particle filter. When mode tracking, the state is split into two subspaces. One subspace is forecast using the particle filter, the other is treated so that its values are set equal to the mode of the marginal pdf. There are many ways to split the state. One hypothesis is that the best results should be obtained from the particle filter with mode tracking when we mode track the maximum number of unimodal dimensions. The aim of this paper is to test this hypothesis using the three dimensional stochastic Lorenz equations with direct observations. It is found that mode tracking the maximum number of unimodal dimensions does not always provide the best result. The best choice of states to mode track depends on the number of particles used and the accuracy and frequency of the observations.