940 resultados para fluctuating valence
Resumo:
The reactivity of the mer-[RuCl3(dppb)H2O] complex (1) with di-hydrogen shows that the products formed depend on the conditions of the reaction, i.e., solvents and presence or absence of a base. The new mixed-valence complexes [(diop)ClRu-(h-Cl)(3)-RuCl(dppb)] (3), [(binap)CIRu-(p-Cl)(3)-RuCl(dppb)] (4), [(PPh3)(2)ClRu-(mu-Cl)(3)-RuCl(dppb)] (6), [(dppn)ClRu-(mu-Cl)(3)-RuCl(dppb)] (7), [(P-ptol(3))(2)ClRu-(mu-Cl)(3)-RuCl(dppb)] (8), [(SbPh3)(2)ClRu-(mu-Cl)(3)-RuCl(dppb)] (9), [(eta(6)-C6H6)Ru-(mu-Cl)(3)-RuCl(dppb)] (11) and the known mixed-valence [(dppb)CIRu-(mu-Cl)(3)-RuCl(dppb)] (5) and [(diop)ClRu-(mu-Cl)(3)-RuCl(diop)] (10) were synthesized from complexes (1) or (2) using a methodology developed in our research group. The known complexes [(dppb)ClRu-(mu-Cl)(2)-RuCl(dppb)] (12), [(dppb)(CO)Ru-(mu-Cl)(3)-RuCl(dppb)] (13) and [H2NEt2][(dppb)ClRu-(mu-Cl)(3)-RuCl(dppb)] (14) were synthesized by changing the reaction conditions between mer-[RuCl3(dppb)H2O] (1) and dihydrogen. The crystal structures of (5) and (11) were determined by single-crystal X-ray diffraction. Some of the complexes described here are effective pre-catalysts for the hydrogenation of imines. Preliminary results on the homogeneous hydrogenation of the imines Ph-CH2-N=CH-Ph and Ph-N=CH-Ph are presented. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
We have used the periodic quantum-mechanical method with density functional theory at the B3LYP level in order to study TiO2/Sn doped (1 1 0) surfaces and have investigated the structural, electronic and energy band properties of these oxides. Our calculated relaxation directions for TiO2 is the experimental one and is also in agreement with other theoretical results. We also observe for the doped systems relaxation of lattice positions of the atoms. Modification of Sri, O and Ti charges depend on the planes and positions of the substituted atoms. Doping can modify the Fermi levels, energy gaps as well as the localization and composition of both valence and conduction band main components. Doping can also modify the chemical, electronic and optical properties of these oxides surfaces increasing their suitability for use as gas sensors and optoelectronic devices. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Few environmental factors have a larger influence on animal energetics than temperature, a fact that makes thermoregulation a very important process for survival. In general, endothermic species, i.e., mammals and birds, maintain a constant body temperature (Tb) in fluctuating environmental temperatures using autonomic and behavioural mechanisms. Most of the knowledge on thermoregulatory physiology has emerged from studies using mammalian species, particularly rats. However, studies with all vertebrate groups are essential for a more complete understanding of the mechanisms involved in the regulation of Tb. Ectothermic vertebrates-fish, amphibians and reptiles-thermoregulate essentially by behavioural mechanisms. With few exceptions, both endotherms and ectotherms develop fever (a regulated increase in Tb) in response to exogenous pyrogens, and regulated hypothermia (anapyrexia) in response to hypoxia. This review focuses on the mechanisms, particularly neuromediators and regions in the central nervous system, involved in thermoregulation in vertebrates, in conditions of euthermia, fever and anapyrexia. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Photoluminescence (PL) behavior of SrBi2Nb2O9 (SBN) powders was explained by means of beta-Bi2O3 phase on the SBN lattice. Oxygen vacancies and recombination of electrons holes in the valence band lead to the formation of [NbO5 center dot V-O(x)], [NbO5 center dot V-O(center dot)] and [NbO5 center dot V-O(center dot center dot)] complex clusters which are the main reason for the PL at room temperature. X-ray diffraction and Fourier transform Raman spectroscopy were used as tools to investigate the structural changes in SBN lattice allowing to correlate [NbO5 center dot V-O(center dot)]/[NbO6](') ratio with the evolution of the visible PL emission in the SBN powders. (c) 2007 American Institute of Physics.
Resumo:
The anelastic relaxation (elastic energy loss and Young modulus) of nearly stoichiometric La2CuO4+delta with LTO structure was measured. Extraordinarily intense effects are present below room temperature in the elastic dynamic susceptibility, indicating relaxational dynamics of a relevant fraction of the lattice. The involved degrees of freedom are identified as rotations of the CuO6 octahedra. Two distinct processes are found at frequencies around 1 kKz: one is observed around 150 K and is characterized by a mean activation energy of 2800 K; the second one occurs below 30 K and is governed by atomic tunnelling. Two explanations are proposed for the faster process: i) formation of fluctuating LTT domains on a scale of few atomic cells; ii) the LTO phase is a dynamical Jahn-Teller phase with all the octahedra tunneling between two LTT-like tilts. In both cases there would be important implications regarding the mechanisms giving rise to charge nanophase separation and strong electron-phonon coupling.
Resumo:
A joint experimental and theoretical study has been carried out to rationalize the results of visible photoluminescence measurements at room temperature on Sr1-xTiO3-x (ST) perovskite thin films. From the experimental side, ST thin films, x = 0 to 0.9, have been synthesized following soft chemical processing, and the corresponding photoluminescence properties have been measured. First principles quantum mechanical techniques, based on density functional theory at the B3LYP level, have been employed to study the electronic structure of a crystalline, stoichiometric (x = 0) ST-s model and a nonstoichiometric (SrO-deficient, x not equal 0) and structurally disordered ST-d model. The relevance of the present theoretical and experimental results of the photoluminescence behavior of ST is discussed. The optical spectra and the calculations indicate that the symmetry-breaking process on going from ST-s to ST-d creates electronic levels in the valence band. Moreover, an analysis of the Mulliken charge distribution reveals a charge gradient in the structure. These combined effects seem to be responsible for the photoluminescence behavior of deficient Sr1-xTiO3-x.
Resumo:
The influence of dopants commonly used in SnO2 varistor ceramics, such as CoO, Cr2O3 or Nb2O5, on the structural properties of SnO2 was investigated. Several SnO2-based ceramics containing only one of the dopants were prepared and characterized. Spectroscopic investigations [visible, near infrared (IR) and IR region] were performed to obtain information about dopants valence states inside the ceramics, as well as about their influence on electronic structure of the material. Structural properties were investigated by X-ray diffraction analysis and mechanisms of dopant incorporation were proposed. Obtained results were confirmed with results of the electrical measurements. Microstructural changes in doped ceramics were investigated by scanning electron microscopy (SEM) analysis that showed great differences in densities, grain size, and morphology of the SnO2 ceramics depending on type of dopants and their distribution. (C) 2004 Published by Elsevier B.V.
Resumo:
This work is intended to report on optical measurements in a parabolic quantum well with a two dimensional-three dimensional electron gas. Photoluminescence results show broad spectra which are related to emission involving several subbands on conduction band with the fundamental level of the valence band. This assumption is based on the behavior of the PL peak position and the full width at half maximum in the function of the incident power intensity. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
A joint experimental and theoretical study has been carried out to rationalize for the first time the photoluminescence (PL) properties of disordered CaWO4 (CWO) thin films. From the experimental side, thin films of CWO have been synthesized following a soft chemical processing, their structure has been confirmed by X-ray diffraction data and corresponding PL properties have been measured using the 488 nm line of an argon ion laser. Although we observe PL at room temperature for the crystalline thin films, the structurally disordered samples present much more intense emission. From the theoretical side, first principles quantum mechanical calculations, based on density functional theory at B3LYP level, have been employed to study the electronic structure of a crystalline (CWO-c) and asymmetric (CWO-a) periodic model. Electronic properties are analyzed in the light of the experimental results and their relevance in relation to the PL behavior of CWO is discussed. The symmetry breaking process on going from CWO-c to CWO-a creates localized electronic levels above the valence band and a negative charge transfer process takes place from threefold, WO3, to fourfold, WO4,. tungsten coordinations. The correlation of both effects seems to be responsible for the PL of amorphous CWO. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Amorphous and crystalline powder of PLT phase was synthesized by using the Pechini method. Infrared (FTIR) analysis of the polymeric resin shows intense bands of organic materials from 250 to 1620 cm(-1). X-ray diffraction (XRD) and Raman spectra of calcined powder at different temperatures show amorphous phase at 450 degrees C/3 h, semi-crystalline phase at 550 degrees C/3 h and a crystalline phase at 800 degrees C/3 h. Luminescence effect was observed in amorphous powder calcined from 300 to 350 degrees/3 h with broad absorption peaks in 579 nm at 300 degrees C/3 h and 603 rum at 350 degrees C/3 h, respectively. The photoluminescence effect is attributed to emissions of Ti -> 0 directly from the oxygen 2p orbital (valence band) to the titanate 3d orbital (conduction bands). (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The relation between the composition and electronic structure of the perfectly inverse spinel compound Zn7-xMxSb2O12 (M = Ni and Co) has been studied by powder X-ray diffraction and X-ray photoelectron spectroscopy. Changes in the site occupancy are associated with shifts in the core levels as observed in the core level spectral analyses. The configuration of the density of states in the valence band due to the Co and Ni states can be observed in the valence band spectra. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Pt-modified SnO2 electrodes were prepared onto titanium substrates in the form of thin films of similar to2 mum at different temperatures in the range from 200 to 400degreesC. Surface morphology was examined by scanning electron microscopy (SEM). It was found that Pt-SnO2 sol-gel layers are significantly rough and have a low porosity. X-ray diffraction (XRD) studies showed that the films consist of Pt nanoparticles with average size varying from about 5 to 10 nm, depending on the preparation temperature, and amorphous tin oxide. X-ray photoelectron spectroscopy (XPS) was employed to determine the superficial composition of the electrodes and demonstrated the presence of Sn4+ in all the samples. XPS spectra of the Pt 4f electrons showed the presence of Pt in the zero-valence state as well as in ionic forms. The general electrochemical behavior was characterized by cyclic voltammetry in 1 mol l(-1) HClO4 and the electrocatalytic activity towards the oxidation of formaldehyde was investigated by potential sweeps and chronoamperometry. The results obtained show that the Pt-SnO2/Ti system exhibits a significant catalytic activity for the oxidation of formaldehyde, with an onset potential below 0.1 V. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Structural and electronic properties of the bulk and relaxed surfaces (TiO2 and PbO terminated) of cubic PbTiO3 are investigated by means of periodic quantum-mechanical calculations based on density functional theory. It is observed that the difference in surface energies is small and relaxations effects are most prominent for Ti and Ph surface atoms. The electronic structure shows a splitting of the lowest conduction bands for the TiO2 terminated surface and of the highest valence bands for the PbO terminated slab. The calculated indirect band gap is: 3.18, 2.99 and 3.03 eV for bulk, TiO2 and PbO terminations, respectively. The electron density maps show that the Ti-O bond has a partial covalent character, whereas the Pb-O bonds present a very low covalency. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The K+ reversible processes for ion exchange in KhFek[Fe(CN)(6)](l)center dot mH(2)O host compounds (Prussian Blue) were thermodynamically analyzed. A thermodynamic approach was established and developed based on the consideration of a lattice-gas model where the electronic contribution to the chemical potential is neglected and the ion-host interaction is not considered. The occupation fraction of the intercalation process was calculated from the kinetic parameters obtained through ac-electrogravimetry in a previous paper. In this way, the mass potential transfer function introduces a new way to evaluate the thermodynamic aspect of intercalation. Finally, based on the thermodynamic approach, the energy used to put each K+ ion into the host material was calculated. The values were shown to be in good agreement with the values obtained through transient techniques, for example, cyclic voltammetry. As a result, this agreement between theory and experimental data validates the thermodynamic approach considered here, and for the first time, the thermodynamic aspects of insertion were considered for mixed valence materials.
Resumo:
Polysiloxane hybrid films were deposited on stainless steel by dip-coating using a sol prepared by hydrolytic co-polycondensation of tetraethoxysilane (TEOS) and 3-methacryloxy propyltrimethoxysilane (MPTS), followed by radical polymerization of methacrylic moieties. The TEOS/MPTS ratio was chosen equal to 2 and the Ce/Si ratio varied between 0.01 and 0.1. The effects of cerium concentration and valence (Ce(III) and Ce (IV)) on the structural features of polysiloxane films were studied by X-ray photoelectron spectroscopy (XPS) and (29)Si nuclear magnetic resonance (NMR). The corrosion protection of stainless steel by the hybrid coatings was investigated by XPS, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curves, after immersion in saline and acid solutions. The NMR results have shown for Ce(IV) doped films a high degree of polycondensation of up to 89%. Electrochemical analysis has evidenced that hybrid films with the lowest Ce concentration act as an efficient diffusion barrier by increasing the corrosion resistance and reducing the current densities up to 3 orders of magnitude compared to bare stainless steel. The analysis of structural effects induced by Ce(III) and Ce(IV) species, performed by XPS, indicates that the improved corrosion protection of Ce(IV) doped films might be mainly related to the enhanced polymerization of siloxane groups. (C) 2010 Elsevier B.V. All rights reserved.