939 resultados para entry and exit
Resumo:
Soil structure is generally defined as the arrangement, orientation, and organization of the primary particles of sand, silt, and clay into compound aggregates, which exhibit properties that are unequal to the properties of a mass of nonaggregated material with a similar texture.6 Therefore the nature of soil structure is that it conveys specific properties to the soil and any alteration, i.e., breakdown or structural development, to the soil structural units will affect the physical properties of the soil. The aggregation and organization of the soil particles tend to form a hierarchical order4, 5 where the lower orders tend to have higher densities and greater internal strength than the higher orders. A schematic diagram of the hierarchical nature of soil structural elements in a clay soil is given in Fig. 1.4 Clay particles tend to form domains (packets of parallel clay sheets, generally consisting of 5-7 sheets), in turn several domains form clusters, followed by several orders of clusters, micro- and macroaggregates. The hierarchical nature implies that the destruction of a lower order will result in the destruction of all higher hierarchical orders. An example is the dispersion of sodic clay domains which results in the destruction of all higher orders, resulting in a dense soil with low hydraulic conductivity. Hence the clay domains are the fundamental building blocks of the soil and its integrity may determine the soil's physical properties and behavior.
Resumo:
Online encyclopedia providing detailed, scholarly information on key topics and philosophers in all areas of philosophy. The IEP is free of charge, is available to all internet users world wide, and is continually revised and updated.
Resumo:
P>Allergens can be maternally transferred to the fetus or neonate, though it is uncertain how this initial allergen exposure may impact the development of allergy responses. To evaluate the roles of timing and level of maternal allergen exposure in the early life sensitization of progeny, female BALB/c mice were given ovalbumin (OVA) orally during pregnancy, lactation or weekly at each stage to investigate the immunoglobulin E (IgE) antibody production and cellular responsiveness of their offspring. Exposure to OVA during pregnancy was also evaluated in OVA-specific T-cell receptor (TCR) transgenic (DO11.10) mice. The effect of prenatal antigen exposure on offspring sensitization was dependent on antigen intake, with low-dose OVA inducing tolerance followed by neonatal immunization that was sustained even when pups were immunized when 3 weeks old. These offspring received high levels of transforming growth factor-beta via breastfeeding. High-dose exposure during the first week of pregnancy or perinatal period induced transient inhibition of IgE production following neonatal immunization; although for later immunization IgE production was enhanced in these offspring. Postnatal maternal antigen exposure provided OVA transference via breastfeeding, which consequently induced increased offspring susceptibility to IgE antibody production according to week post-birth. The effect of low-dose maternal exposure during pregnancy was further evaluated using OVA transgenic TCR dams as a model. These progeny presented pronounced entry of CD4(+) T cells into the S phase of the cell cycle with a skewed T helper type 2 response early in life, revealing the occurrence of allergen priming in utero. The balance between tolerance and sensitization depended on the amount and timing of maternal allergen intake during pregnancy.