999 resultados para electron microprobe analyses
Resumo:
On Elan Bank, a southwestern promontory of the Kerguelen Plateau in the southern Indian Ocean, we cored an interval of conglomerate and minor sandstone within a thick section of Cretaceous flood basalts. Most of the detritus in these sedimentary rocks is volcanic with the exception of a small amount of conspicuous material of probable continental derivation. The anomalous clasts include several pebbles of gneiss (Nicolaysen et al., 2001, doi:10.1130/0091-7613(2001)029<0235:POPGBG>2.0.CO;2) and garnet sand grains. The presence of continental material on the plateau bears significantly on the interpretation of Indian Ocean basalts (Weis et al., 2001, doi:10.1130/0091-7613(2001)029<0147:OOCCII>2.0.CO;2). The purpose of the present study was to determine the composition of the garnets to provide additional constraints on the nature of the source area.
Resumo:
Very rare, halogen-rich andesite melt inclusions (HRA) in bytownitic plagioclase phenocrysts (An89-90) from tephra fallout of the Izu arc volcanic front (Izu VF) provide new insights into the processes of fluid release from slab trenchward to the volcanic front in a cool subduction zone. These HRA are markedly enriched in Cl, F and Li - by factors of up to 8 (Cl, F) and 1.5 (Li) - but indistinguishable with respect to the fluid-mobile large-ion lithophile elements (LILE; K, Sr, Rb, Cs, Ba, Pb, U), rare earths (REE) or high field strength elements (HFSE) from the low-K tholeiitic magmas of the Izu VF. We suggest that the chemical signature of the HRA reflects the presence of a fluid in the mantle source that originated from the serpentinized mantle peridotite above the metacrust. This "wedge serpentinite" presumably formed by fluid infiltration beneath the forearc and was subsequently down-dragged with the slab to arc front depths. The combined evidence from the Izu VF (?110 km above slab) and the outer forearc serpentinite seamounts (~25 to 30 km above slab) suggests that the slab flux of B and Cl is highest beneath the forearc, and decreases with increasing slab depths. In contrast, the slab flux of Li is minor beneath the forearc, but increases with depth. Fluorine may behave similarly to Li, whereas the fluid-mobile LILE appear to be largely retained in the slab trenchward from the Izu VF. Consequently, the chemical signatures of both Izu trench sediments and basaltic rocks appear preserved until arc front depths.
Resumo:
New petrological and geochemical data were obtained for basalts recovered during cruise 24 of the R/V "Akademik Nikolay Strakhov" in 2006. These results significantly contributed to the understanding of the formation of tholeiitic magmatism at the northern end of the Knipovich Ridge of the Polar Atlantic. Dredging was performed for the first time both in the rift valley and on the flanks of the ridge. It showed that the conditions of magmatism have not changed since at least 10 Ma. The basalts correspond to slightly enriched tholeiites, whose primary melts were derived at the shallowest levels and were enriched in Na and depleted in Fe (Na-TOR type). The most enriched basalts are typical of the earlier stages of the opening and were found on the flanks of the ridge in its northernmost part. Variations in the ratios of Sr, Nd, and Pb isotopes and lithophile elements allowed us to conclude that the primary melts generated beneath the spreading zone of the Knipovich Ridge were modified by the addition of the enriched component that was present both in the Neogene and Quaternary basalts of Spitsbergen Island. Compared with the primitive mantle, the extruding magmas were characterized by positive Nb and Zr anomalies and a negative Th anomaly. The formation of primary melts involved melting of the metasomatized depleted mantle reservoir that appeared during the early stages of opening of the Norwegian-Greenland Basin and transformation of the paleo-Spitsbergen Fault into the Knipovich spreading ridge, which was accompanied by magmatism in western Spitsbergen during its separation from the northern part of Greenland.
Resumo:
The Ninetyeast Ridge (NER), a north-south striking, 5,000 km long, 77 to 43 Ma chain of basaltic submarine volcanoes in the eastern Indian Ocean formed as a hotspot track created by rapid northward migration of the Indian Plate over the Kerguelen hotspot. Based on the major and trace element contents of unaltered basaltic glasses from six locations along the NER, we show that the NER was constructed by basaltic magma derived from at least three geochemically distinct mantle sources: (1) a source enriched in highly incompatible elements relative to primitive mantle like the source of the 29-24 Ma flood basalts in the Kerguelen Archipelago; (2) an incompatible element-depleted source similar to the source of Mid-Ocean Ridge Basalt (MORB) erupted along the currently active Southeast Indian Ridge (SEIR); and (3) an incompatible element-depleted source that is compositionally and mineralogically distinct from the source of SEIR MORB. Specifically, this depleted mantle source was garnet-bearing and had higher Y/Dy and Nb/Zr, but lower Zr/Sm, than the SEIR MORB source. We infer that this third source formed as a garnet-bearing residue created during a previous melting event, perhaps an initial partial melting of the mantle hotspot. Subsequently, this residue partially melted over a large pressure range, from slightly over 3 GPa to less than 1 GPa, and to a high extent (~ 30%) thereby creating relatively high SiO2 and FeO contents in some NER basalts relative to SEIR MORB.
(Table T1) Mineral composition, minor components and alteration characteristics of ODP Hole 176-735B