753 resultados para effective
Resumo:
In an effort to reduce Interlibrary borrowing activity, while enhancing the Library collection, the Bertrand Library has initiated a program to purchase current monographs requested through ILL by Bucknell University students and faculty. The results have been a successful reduction in ILL workload, and a cost-effective means of document delivery as measured by average delivery time, cost-per-title, processing costs, and circulation statistics. This procedure reflects an overall change in our philosophy concerning document access and delivery, which led to the reorganization of ILL services and staff in the Bertrand Library.
Resumo:
Ventricular assist devices (VADs) and total artificial hearts have been in development for the last 50 years. Since their inception, simulators of the circulation with different degrees of complexity have been produced to test these devices in vitro. Currently, a new path has been taken with the extensive efforts to develop paediatric VADs, which require totally different design constraints. This paper presents the manufacturing details of an economical simulator of the systemic paediatric circulation. This simulator allows the insertion of a paediatric VAD, includes a pumping ventricle, and is adjustable within the paediatric range. Rather than focusing on complexity and physiological simulation, this simulator is designed to be simple and practical for rapid device testing. The simulator was instrumented with medical sensors and data were acquired under different conditions with and without the new PediaFlowTM paediatric VAD. The VAD was run at different impeller speeds while simulator settings such as vascular resistance and stroke volume were varied. The hydraulic performance of the VAD under pulsatile conditions could be characterized and the magnetic suspension could be tested via manipulations such as cannula clamping. This compact mock loop has proven to be valuable throughout the PediaFlow development process and has the advantage that it is uncomplicated and can be manufactured cheaply. It can be produced by several research groups and the results of different VADs can then be compared easily.
Resumo:
FRAX-based cost-effective intervention thresholds in the Swiss setting were determined. Assuming a willingness to pay at 2× Gross Domestic Product per capita, an intervention aimed at reducing fracture risk in women and men with a 10-year probability for a major osteoporotic fracture at or above 15% is cost-effective.
Resumo:
In this communication, solid-state/melt extrusion (SSME) is introduced as a novel technique that combines solid-state shear pulverization (SSSP) and conventional twin screw extrusion (TSE) in a single extrusion system. The morphology and property enhancements in a model linear low-density polyethylene/organically modified clay nanocomposite sample fabricated via SSME were compared to those fabricated via SSSP and TSE. The results show that SSME is capable of exfoliating and dispersing the nanofillers similarly to SSSP, while achieving a desirable output rate and producing extrudate similar in form to that from TSE.
Resumo:
We present a mechanistic modeling methodology to predict both the percolation threshold and effective conductivity of infiltrated Solid Oxide Fuel Cell (SOFC) electrodes. The model has been developed to mirror each step of the experimental fabrication process. The primary model output is the infiltrated electrode effective conductivity which provides results over a range of infiltrate loadings that are independent of the chosen electronically conducting material. The percolation threshold is utilized as a valuable output data point directly related to the effective conductivity to compare a wide range of input value choices. The predictive capability of the model is demonstrated by favorable comparison to two separate published experimental studies, one using strontium molybdate and one using La0.8Sr0.2FeO3-δ as infiltrate materials. Effective conductivities and percolation thresholds are shown for varied infiltrate particle size, pore size, and porosity with the infiltrate particle size having the largest impact on the results.
Resumo:
We present a mechanistic modeling methodology to predict both the percolation threshold and effective conductivity of infiltrated Solid Oxide Fuel Cell (SOFC) electrodes. The model has been developed to mirror each step of the experimental fabrication process. The primary model output is the infiltrated electrode effective conductivity which provides results over a range of infiltrate loadings that are independent of the chosen electronically conducting material. The percolation threshold is utilized as a valuable output data point directly related to the effective conductivity to compare a wide range of input value choices. The predictive capability of the model is demonstrated by favorable comparison to two separate published experimental studies, one using strontium molybdate and one using La0.8Sr0.2FeO3-delta as infiltrate materials. Effective conductivities and percolation thresholds are shown for varied infiltrate particle size, pore size, and porosity with the infiltrate particle size having the largest impact on the results. (C) 2013 The Electrochemical Society. All rights reserved.
Resumo:
Background Abstractor training is a key element in creating valid and reliable data collection procedures. The choice between in-person vs. remote or simultaneous vs. sequential abstractor training has considerable consequences for time and resource utilization. We conducted a web-based (webinar) abstractor training session to standardize training across six individual Cancer Research Network (CRN) sites for a study of breast cancer treatment effects in older women (BOWII). The goals of this manuscript are to describe the training session, its participants and participants' evaluation of webinar technology for abstraction training. Findings A webinar was held for all six sites with the primary purpose of simultaneously training staff and ensuring consistent abstraction across sites. The training session involved sequential review of over 600 data elements outlined in the coding manual in conjunction with the display of data entry fields in the study's electronic data collection system. Post-training evaluation was conducted via Survey Monkey©. Inter-rater reliability measures for abstractors within each site were conducted three months after the commencement of data collection. Ten of the 16 people who participated in the training completed the online survey. Almost all (90%) of the 10 trainees had previous medical record abstraction experience and nearly two-thirds reported over 10 years of experience. Half of the respondents had previously participated in a webinar, among which three had participated in a webinar for training purposes. All rated the knowledge and information delivered through the webinar as useful and reported it adequately prepared them for data collection. Moreover, all participants would recommend this platform for multi-site abstraction training. Consistent with participant-reported training effectiveness, results of data collection inter-rater agreement within sites ranged from 89 to 98%, with a weighted average of 95% agreement across sites. Conclusions Conducting training via web-based technology was an acceptable and effective approach to standardizing medical record review across multiple sites for this group of experienced abstractors. Given the substantial time and cost savings achieved with the webinar, coupled with participants' positive evaluation of the training session, researchers should consider this instructional method as part of training efforts to ensure high quality data collection in multi-site studies.
Resumo:
Based on the structural similarity of viral fusion proteins within the family Paramyxoviridae, we tested recently described and newly synthesized acetanilide derivatives for their capacity to inhibit measles virus (MV)-, canine distemper virus (CDV)- and Nipah virus (NiV)-induced membrane fusion. We found that N-(3-cyanophenyl)-2-phenylacetamide (compound 1) has a high capacity to inhibit MV- and CDV-induced (IC(50) muM), but not NiV-induced, membrane fusion. This compound is of outstanding interest because it can be easily synthesized and its cytotoxicity is low [50 % cytotoxic concentration (CC(50)) >/= 300 muM], leading to a CC(50)/IC(50) ratio of approximately 100. In addition, primary human peripheral blood lymphocytes and primary dog brain cell cultures (DBC) also tolerate high concentrations of compound 1. Infection of human PBMC with recombinant wild-type MV is inhibited by an IC(50) of approximately 20 muM. The cell-to-cell spread of recombinant wild-type CDV in persistently infected DBC can be nearly completely inhibited by compound 1 at 50 muM, indicating that the virus spread between brain cells is dependent on the activity of the viral fusion protein. Our findings demonstrate that this compound is a most applicable inhibitor of morbillivirus-induced membrane fusion in tissue culture experiments including highly sensitive primary cells.