998 resultados para eastern Philippine Sea
Resumo:
This book presents new data on chemical and mineral compositions and on density of altered and fresh igneous rocks from key DSDP and ODP holes drilled on the following main tectonomagmatic structures of the ocean floor: 1. Mid-ocean ridges and abyssal plains and basins (DSDP Legs 37, 61, 63, 64, 65, 69, 70, 83, and 91 and ODP Legs 106, 111, 123, 129, 137, 139, 140, 148, and 169); 2. Seamounts and guyots (DSDP Legs 19, 55, and 62 and ODP Legs 143 and 144); 3. Intraplate rises (DSDP Legs 26, 33, 51, 52, 53, 72, and 74 and ODP Legs 104, 115, 120, 121, and 183); and 4. Marginal seas (DSDP Legs 19, 59, and 60 and ODP Legs 124, 125, 126, 127, 128, and 135). Study results of altered gabbro from the Southwest Indian Ridge (ODP Leg 118) and serpentinized ultramafic rocks from the Galicia margin (ODP Leg 103) are also presented. Samples were collected by the authors from the DSDP/ODP repositories, as well as during some Glomar Challenger and JOIDES Resolution legs. The book also includes descriptions of thin sections, geochemical diagrams, data on secondary mineral assemblages, and recalculated results of chemical analyses with corrections for rock density. Atomic content of each element can be quantified in grams per standard volume (g/1000 cm**3). The suite of results can be used to estimate mass balance, but parts of the data need additional work, which depends on locating fresh analogs of altered rocks studied here. Results of quantitative estimation of element mobility in recovered sections of the upper oceanic crust as a whole are shown for certain cases: Hole 504B (Costa Rica Rift) and Holes 856H, 857C, and 857D (Middle Valley, Juan de Fuca Ridge).
Resumo:
Detrital modes for 524 deep-marine sand and sandstone samples recovered on circum-Pacific, Caribbean, and Mediterranean legs of the Deep Sea Drilling Project and the Ocean Drilling Program form the basis for an actualistic model for arc-related provenance. This model refines the Dickinson and Suczek (1979) and Dickinson and others (1983) models and can be used to interpret the provenance/tectonic history of ancient arc-related sedimentary sequences. Four provenance groups are defined using QFL, QmKP, LmLvLs, and LvfLvmiLvl ternary plots of site means: (1) intraoceanic arc and remnant arc, (2) continental arc, (3) triple junction, and (4) strike-slip-continental arc. Intraoceanic- and remnant-arc sands are poor in quartz (mean QFL%Q < 5) and rich in lithics (QFL%L > 75); they are predominantly composed of plagioclase feldspar and volcanic lithic fragments. Continental-arc sand can be more quartzofeldspathic than the intraoceanic- and remnant-arc sand (mean QFL%Q values as much as 10, mean QFL%F values as much as 65, and mean QmKP%Qm as much as 20) and has more variable lithic populations, with minor metamorphic and sedimentary components. The triple-junction and strike-slip-continental groups compositionally overlap; both are more quartzofeldspathic than the other groups and show highly variable lithic proportions, but the strike-slip-continental group is more quartzose. Modal compositions of the triple junction group roughly correlate with the QFL transitional-arc field of Dickinson and others (1983), whereas the strike-slip-continental group approximately correlates with their dissected-arc field.
Resumo:
The quantity, type, and maturity of organic matter of Quaternary and Tertiary sediments from the Philippine Sea (DSDP Leg 58; Sites 442-446) were determined. Hydrocarbons in lipid extracts were analyzed by capillary-column gas chromatography. Kerogen concentrates were investigated by microscopy for vitrinite reflectance values and maceral composition. In the Shikoku Basin sediments (Sites 442, 443, and 444), organic carbon values range between 0.03 and 0.44 per cent. The higher values in the younger sediments are interpreted as an indication of increasing deposition of eroded organic particles during the past 4 m.y. Microscopic analyses revealed a dominance of reworked organic matter. Primary material could not be distinguished readily; thus, no maturation trend could be established. Extract yields were low. TV-alkane distributions mostly show maxima at n-C29 and n-C31 and high odd-over-even predominances, typical of material which originated in terrigenous higher plants. The organic-carbon values of sediments of the Daito Ridge and Basin region (Sites 444 and 445) range from less than 0.01 to 0.05 per cent. TV-alkanes exhibit varying marine and terrigenous influences. Some carbonate-rich samples show a pronounced even-over-odd predominance. At least the older sediments contained less recycled organic matter than the Shikoku Basin samples. The maturity, where measurable, was low. None of the Philippine Sea samples indicates a significant hydrocarbon-generation potential.
Resumo:
Sediments recovered by drilling during Legs 58, 59, and 60 in the North and South Philippine Sea have been analyzed by X-ray diffractometry. The CaCO3 content was measured separately. The sites encompass several volcanic ridges and intervening inter-arc basin troughs as well as sites on the Mariana arc fore-arc sediment prism and the Mariana Trench. The sediments at all sites received major volcanogenic input from the various arcs; they tend to be rich in volcanic glass, with associated quartz, feldspar, pyroxenes and amphibole. Carbonate is a major component only at Site 445 at the southern end of the Daito Ridge, and at Site 448 on the Palau-Kyushu Ridge. All other sites were either deep relative to the carbonate compensation depth or had very high non-carbonate sedimentation rates. Clay minerals are mainly smectite and illite with lesser variable proportions of chlorite and kaolinite. Smectite predominates over illite except at sites in the Shikoku Basin and the Daito Ridge, and at one site in the Mariana Trench. At several sites, smectite increases and illite decreases with depth. Principal zeolites are phillipsite and clinoptilolite. Analcime occurs in some samples.