934 resultados para dynamic systems theory
Resumo:
Software development methodologies are becoming increasingly abstract, progressing from low level assembly and implementation languages such as C and Ada, to component based approaches that can be used to assemble applications using technologies such as JavaBeans and the .NET framework. Meanwhile, model driven approaches emphasise the role of higher level models and notations, and embody a process of automatically deriving lower level representations and concrete software implementations. The relationship between data and software is also evolving. Modern data formats are becoming increasingly standardised, open and empowered in order to support a growing need to share data in both academia and industry. Many contemporary data formats, most notably those based on XML, are self-describing, able to specify valid data structure and content, and can also describe data manipulations and transformations. Furthermore, while applications of the past have made extensive use of data, the runtime behaviour of future applications may be driven by data, as demonstrated by the field of dynamic data driven application systems. The combination of empowered data formats and high level software development methodologies forms the basis of modern game development technologies, which drive software capabilities and runtime behaviour using empowered data formats describing game content. While low level libraries provide optimised runtime execution, content data is used to drive a wide variety of interactive and immersive experiences. This thesis describes the Fluid project, which combines component based software development and game development technologies in order to define novel component technologies for the description of data driven component based applications. The thesis makes explicit contributions to the fields of component based software development and visualisation of spatiotemporal scenes, and also describes potential implications for game development technologies. The thesis also proposes a number of developments in dynamic data driven application systems in order to further empower the role of data in this field.
Resumo:
Service-based systems that are dynamically composed at run time to provide complex, adaptive functionality are currently one of the main development paradigms in software engineering. However, the Quality of Service (QoS) delivered by these systems remains an important concern, and needs to be managed in an equally adaptive and predictable way. To address this need, we introduce a novel, tool-supported framework for the development of adaptive service-based systems called QoSMOS (QoS Management and Optimisation of Service-based systems). QoSMOS can be used to develop service-based systems that achieve their QoS requirements through dynamically adapting to changes in the system state, environment and workload. QoSMOS service-based systems translate high-level QoS requirements specified by their administrators into probabilistic temporal logic formulae, which are then formally and automatically analysed to identify and enforce optimal system configurations. The QoSMOS self-adaptation mechanism can handle reliability- and performance-related QoS requirements, and can be integrated into newly developed solutions or legacy systems. The effectiveness and scalability of the approach are validated using simulations and a set of experiments based on an implementation of an adaptive service-based system for remote medical assistance.
Resumo:
Context/Motivation - Different modeling techniques have been used to model requirements and decision-making of self-adaptive systems (SASs). Specifically, goal models have been prolific in supporting decision-making depending on partial and total fulfilment of functional (goals) and non-functional requirements (softgoals). Different goalrealization strategies can have different effects on softgoals which are specified with weighted contribution-links. The final decision about what strategy to use is based, among other reasons, on a utility function that takes into account the weighted sum of the different effects on softgoals. Questions/Problems - One of the main challenges about decisionmaking in self-adaptive systems is to deal with uncertainty during runtime. New techniques are needed to systematically revise the current model when empirical evidence becomes available from the deployment. Principal ideas/results - In this paper we enrich the decision-making supported by goal models by using Dynamic Decision Networks (DDNs). Goal realization strategies and their impact on softgoals have a correspondence with decision alternatives and conditional probabilities and expected utilities in the DDNs respectively. Our novel approach allows the specification of preferences over the softgoals and supports reasoning about partial satisfaction of softgoals using probabilities. We report results of the application of the approach on two different cases. Our early results suggest the decision-making process of SASs can be improved by using DDNs. © 2013 Springer-Verlag.
Resumo:
The primary aim of this research is to understand what constitutes management accounting and control (MACs) practice and how these control processes are implicated in the day to day work practices and operations of the organisation. It also examines the changes that happen in MACs practices over time as multiple actors within organisational settings interact with each other. I adopt a distinctive practice theory approach (i.e. sociomateriality) and the concept of imbrication in this research to show that MACs practices emerge from the entanglement between human/social agency and material/technological agency within an organisation. Changes in the pattern of MACs practices happens in imbrication processes which are produced as the two agencies entangle. The theoretical approach employed in this research offers an interesting and valuable lens which seeks to reveal the depth of these interactions and uncover the way in which the social and material imbricate. The theoretical framework helps to reveal how these constructions impact on and produce modifications of MACs practices. The exploration of the control practices at different hierarchical levels (i.e. from the operational to middle management and senior level management) using the concept of imbrication process also maps the dynamic flow of controls from operational to top management and vice versa in the organisation. The empirical data which is the focus of this research has been gathered from a case study of an organisation involved in a large vertically integrated palm oil industry company in Malaysia specifically the refinery sector. The palm oil industry is a significant industry in Malaysia as it contributed an average of 4.5% of Malaysian Gross Domestic Product, over the period 1990 -2010. The Malaysian palm oil industry also has a significant presence in global food oil supply where it contributed 26% of the total oils and fats global trade in 2010. The case organisation is a significant contributor to the Malaysian palm oil industry. The research access has provided an interesting opportunity to explore the interactions between different groups of people and material/technology in a relatively heavy process food industry setting. My research examines how these interactions shape and are shaped by control practices in a dynamic cycle of imbrications over both short and medium time periods.
Resumo:
Computational performance increasingly depends on parallelism, and many systems rely on heterogeneous resources such as GPUs and FPGAs to accelerate computationally intensive applications. However, implementations for such heterogeneous systems are often hand-crafted and optimised to one computation scenario, and it can be challenging to maintain high performance when application parameters change. In this paper, we demonstrate that machine learning can help to dynamically choose parameters for task scheduling and load-balancing based on changing characteristics of the incoming workload. We use a financial option pricing application as a case study. We propose a simulation of processing financial tasks on a heterogeneous system with GPUs and FPGAs, and show how dynamic, on-line optimisations could improve such a system. We compare on-line and batch processing algorithms, and we also consider cases with no dynamic optimisations.
Resumo:
The paper suggests a classification of dynamic rule-based systems. For each class of systems, limit behavior is studied. Systems with stabilizing limit states or stabilizing limit trajectories are identified, and such states and trajectories are found. The structure of the set of limit states and trajectories is investigated.
Resumo:
Different types of ontologies and knowledge or metaknowledge connected to them are considered and analyzed aiming at realization in contemporary information security systems (ISS) and especially the case of intrusion detection systems (IDS) or intrusion prevention systems (IPS). Human-centered methods INCONSISTENCY, FUNNEL, CALEIDOSCOPE and CROSSWORD are algorithmic or data-driven methods based on ontologies. All of them interact on a competitive principle ‘survival of the fittest’. They are controlled by a Synthetic MetaMethod SMM. It is shown that the data analysis frequently needs an act of creation especially if it is applied to knowledge-poor environments. It is shown that human-centered methods are very suitable for resolutions in case, and often they are based on the usage of dynamic ontologies
Resumo:
In this paper we consider two computer systems and the dynamic Web technologies they are using. Different contemporary dynamic web technologies are described in details and their advantages and disadvantages have been shown. Specific applications are developed, clinic and studying systems, and their programming models are described. Finally we implement these two applications in the students education process: Online studying has been tested in the Technical University – Varna, Web based clinic system has been used for practical education of the students in the Medical College - Sofia, branch V. Tarnovo
Resumo:
In the specific area of software engineering (SE) for self-adaptive systems (SASs) there is a growing research awareness about the synergy between SE and artificial intelligence (AI). However, just few significant results have been published so far. In this paper, we propose a novel and formal Bayesian definition of surprise as the basis for quantitative analysis to measure degrees of uncertainty and deviations of self-adaptive systems from normal behavior. A surprise measures how observed data affects the models or assumptions of the world during runtime. The key idea is that a "surprising" event can be defined as one that causes a large divergence between the belief distributions prior to and posterior to the event occurring. In such a case the system may decide either to adapt accordingly or to flag that an abnormal situation is happening. In this paper, we discuss possible applications of Bayesian theory of surprise for the case of self-adaptive systems using Bayesian dynamic decision networks. Copyright © 2014 ACM.
Resumo:
Systemized analysis of trends towards integration and hybridization in contemporary expert systems is conducted, and a particular class of applied expert systems, integrated expert systems, is considered. For this purpose, terminology, classification, and models, proposed by the author, are employed. As examples of integrated expert systems, Russian systems designed in this field and available to the majority of specialists are analyzed.
Resumo:
AMS subject classification: 49N35,49N55,65Lxx.
Resumo:
One of the reasons for using variability in the software product line (SPL) approach (see Apel et al., 2006; Figueiredo et al., 2008; Kastner et al., 2007; Mezini & Ostermann, 2004) is to delay a design decision (Svahnberg et al., 2005). Instead of deciding on what system to develop in advance, with the SPL approach a set of components and a reference architecture are specified and implemented (during domain engineering, see Czarnecki & Eisenecker, 2000) out of which individual systems are composed at a later stage (during application engineering, see Czarnecki & Eisenecker, 2000). By postponing the design decisions in such a manner, it is possible to better fit the resultant system in its intended environment, for instance, to allow selection of the system interaction mode to be made after the customers have purchased particular hardware, such as a PDA vs. a laptop. Such variability is expressed through variation points which are locations in a software-based system where choices are available for defining a specific instance of a system (Svahnberg et al., 2005). Until recently it had sufficed to postpone committing to a specific system instance till before the system runtime. However, in the recent years the use and expectations of software systems in human society has undergone significant changes.Today's software systems need to be always available, highly interactive, and able to continuously adapt according to the varying environment conditions, user characteristics and characteristics of other systems that interact with them. Such systems, called adaptive systems, are expected to be long-lived and able to undertake adaptations with little or no human intervention (Cheng et al., 2009). Therefore, the variability now needs to be present also at system runtime, which leads to the emergence of a new type of system: adaptive systems with dynamic variability.
Dynamic method of stiffness identification in impacting systems for percussive drilling applications
Resumo:
Peer reviewed
Resumo:
Brain-computer interfaces (BCI) have the potential to restore communication or control abilities in individuals with severe neuromuscular limitations, such as those with amyotrophic lateral sclerosis (ALS). The role of a BCI is to extract and decode relevant information that conveys a user's intent directly from brain electro-physiological signals and translate this information into executable commands to control external devices. However, the BCI decision-making process is error-prone due to noisy electro-physiological data, representing the classic problem of efficiently transmitting and receiving information via a noisy communication channel.
This research focuses on P300-based BCIs which rely predominantly on event-related potentials (ERP) that are elicited as a function of a user's uncertainty regarding stimulus events, in either an acoustic or a visual oddball recognition task. The P300-based BCI system enables users to communicate messages from a set of choices by selecting a target character or icon that conveys a desired intent or action. P300-based BCIs have been widely researched as a communication alternative, especially in individuals with ALS who represent a target BCI user population. For the P300-based BCI, repeated data measurements are required to enhance the low signal-to-noise ratio of the elicited ERPs embedded in electroencephalography (EEG) data, in order to improve the accuracy of the target character estimation process. As a result, BCIs have relatively slower speeds when compared to other commercial assistive communication devices, and this limits BCI adoption by their target user population. The goal of this research is to develop algorithms that take into account the physical limitations of the target BCI population to improve the efficiency of ERP-based spellers for real-world communication.
In this work, it is hypothesised that building adaptive capabilities into the BCI framework can potentially give the BCI system the flexibility to improve performance by adjusting system parameters in response to changing user inputs. The research in this work addresses three potential areas for improvement within the P300 speller framework: information optimisation, target character estimation and error correction. The visual interface and its operation control the method by which the ERPs are elicited through the presentation of stimulus events. The parameters of the stimulus presentation paradigm can be modified to modulate and enhance the elicited ERPs. A new stimulus presentation paradigm is developed in order to maximise the information content that is presented to the user by tuning stimulus paradigm parameters to positively affect performance. Internally, the BCI system determines the amount of data to collect and the method by which these data are processed to estimate the user's target character. Algorithms that exploit language information are developed to enhance the target character estimation process and to correct erroneous BCI selections. In addition, a new model-based method to predict BCI performance is developed, an approach which is independent of stimulus presentation paradigm and accounts for dynamic data collection. The studies presented in this work provide evidence that the proposed methods for incorporating adaptive strategies in the three areas have the potential to significantly improve BCI communication rates, and the proposed method for predicting BCI performance provides a reliable means to pre-assess BCI performance without extensive online testing.
Resumo:
As the world population continues to grow past seven billion people and global challenges continue to persist including resource availability, biodiversity loss, climate change and human well-being, a new science is required that can address the integrated nature of these challenges and the multiple scales on which they are manifest. Sustainability science has emerged to fill this role. In the fifteen years since it was first called for in the pages of Science, it has rapidly matured, however its place in the history of science and the way it is practiced today must be continually evaluated. In Part I, two chapters address this theoretical and practical grounding. Part II transitions to the applied practice of sustainability science in addressing the urban heat island (UHI) challenge wherein the climate of urban areas are warmer than their surrounding rural environs. The UHI has become increasingly important within the study of earth sciences given the increased focus on climate change and as the balance of humans now live in urban areas.
In Chapter 2 a novel contribution to the historical context of sustainability is argued. Sustainability as a concept characterizing the relationship between humans and nature emerged in the mid to late 20th century as a response to findings used to also characterize the Anthropocene. Emerging from the human-nature relationships that came before it, evidence is provided that suggests Sustainability was enabled by technology and a reorientation of world-view and is unique in its global boundary, systematic approach and ambition for both well being and the continued availability of resources and Earth system function. Sustainability is further an ambition that has wide appeal, making it one of the first normative concepts of the Anthropocene.
Despite its widespread emergence and adoption, sustainability science continues to suffer from definitional ambiguity within the academe. In Chapter 3, a review of efforts to provide direction and structure to the science reveals a continuum of approaches anchored at either end by differing visions of how the science interfaces with practice (solutions). At one end, basic science of societally defined problems informs decisions about possible solutions and their application. At the other end, applied research directly affects the options available to decision makers. While clear from the literature, survey data further suggests that the dichotomy does not appear to be as apparent in the minds of practitioners.
In Chapter 4, the UHI is first addressed at the synoptic, mesoscale. Urban climate is the most immediate manifestation of the warming global climate for the majority of people on earth. Nearly half of those people live in small to medium sized cities, an understudied scale in urban climate research. Widespread characterization would be useful to decision makers in planning and design. Using a multi-method approach, the mesoscale UHI in the study region is characterized and the secular trend over the last sixty years evaluated. Under isolated ideal conditions the findings indicate a UHI of 5.3 ± 0.97 °C to be present in the study area, the magnitude of which is growing over time.
Although urban heat islands (UHI) are well studied, there remain no panaceas for local scale mitigation and adaptation methods, therefore continued attention to characterization of the phenomenon in urban centers of different scales around the globe is required. In Chapter 5, a local scale analysis of the canopy layer and surface UHI in a medium sized city in North Carolina, USA is conducted using multiple methods including stationary urban sensors, mobile transects and remote sensing. Focusing on the ideal conditions for UHI development during an anticyclonic summer heat event, the study observes a range of UHI intensity depending on the method of observation: 8.7 °C from the stationary urban sensors; 6.9 °C from mobile transects; and, 2.2 °C from remote sensing. Additional attention is paid to the diurnal dynamics of the UHI and its correlation with vegetation indices, dewpoint and albedo. Evapotranspiration is shown to drive dynamics in the study region.
Finally, recognizing that a bridge must be established between the physical science community studying the Urban Heat Island (UHI) effect, and the planning community and decision makers implementing urban form and development policies, Chapter 6 evaluates multiple urban form characterization methods. Methods evaluated include local climate zones (LCZ), national land cover database (NCLD) classes and urban cluster analysis (UCA) to determine their utility in describing the distribution of the UHI based on three standard observation types 1) fixed urban temperature sensors, 2) mobile transects and, 3) remote sensing. Bivariate, regression and ANOVA tests are used to conduct the analyses. Findings indicate that the NLCD classes are best correlated to the UHI intensity and distribution in the study area. Further, while the UCA method is not useful directly, the variables included in the method are predictive based on regression analysis so the potential for better model design exists. Land cover variables including albedo, impervious surface fraction and pervious surface fraction are found to dominate the distribution of the UHI in the study area regardless of observation method.
Chapter 7 provides a summary of findings, and offers a brief analysis of their implications for both the scientific discourse generally, and the study area specifically. In general, the work undertaken does not achieve the full ambition of sustainability science, additional work is required to translate findings to practice and more fully evaluate adoption. The implications for planning and development in the local region are addressed in the context of a major light-rail infrastructure project including several systems level considerations like human health and development. Finally, several avenues for future work are outlined. Within the theoretical development of sustainability science, these pathways include more robust evaluations of the theoretical and actual practice. Within the UHI context, these include development of an integrated urban form characterization model, application of study methodology in other geographic areas and at different scales, and use of novel experimental methods including distributed sensor networks and citizen science.