999 resultados para drying temperature
Resumo:
Ultrafiltration (UF) is already used in pulp and paper industry and its demand is growing because of the required reduction of raw water intake and the separation of useful compounds from process waters. In the pulp and paper industry membranes might be exposed to extreme conditions and, therefore, it is important that the membrane can withstand them. In this study, extractives, hemicelluloses and lignin type compounds were separated from wood hydrolysate in order to be able to utilise the hemicelluloses in the production of biofuel. The performance of different polymeric membranes at different temperatures was studied. Samples were analysed for total organic compounds (TOC), lignin compounds (UV absorption at 280 nm) and sugar. Turbidity, conductivity and pH were also measured. The degree of fouling of the membranes was monitored by measuring the pure water flux before and comparing it with the pure water flux after the filtration of hydrolysate. According to the results, the retention of turbidity was observed to be higher at lower temperature compared to when the filtrations were operated at high temperature (70 °C). Permeate flux increased with elevated process temperature. There was no detrimental effect of temperature on most of the membranes used. Microdyn-Nadir regenerated cellulose membranes (RC) and GE-Osmonics thin film membranes seemed to be applicable in the chosen process conditions. The Polyethersulphone (NF-PES-10 and UH004P) and polysulphone (MPS-36) membranes used were highly fouled, but they showed high retentions for different compounds.
Resumo:
A tungsten coil atomizer was used to investigate the effect of heating programs with constant or variable drying temperatures on the atomization of Al, Cd, Cr and Pb. The variation of the surface temperature in the tungsten coil furnace can occur during each heating step due to the design of the power supply, that may apply constant voltages during a programmed time. For volatile elements (Cd), losses in sensitivity were observed when the program with a variable temperature was used. On the other hand, these effects are negligible for less volatile elements (Al and Cr) and any tested program, in different acidic media, could be used without appreciable changes in sensitivities. The results allow the establishment of proper heating programs for elements with different thermochemical behavior in the tungsten coil atomizer.
Resumo:
This paper discusses uncertainties in model projections of summer drying in the Euro-Mediterranean region related to errors and uncertainties in the simulation of the summer NAO (SNAO). The SNAO is the leading mode of summer SLP variability in the North Atlantic/European sector and modulates precipitation not only in the vicinity of the SLP dipole (northwest Europe) but also in the Mediterranean region. An analysis of CMIP3 models is conducted to determine the extent to which models reproduce the signature of the SNAO and its impact on precipitation and to assess the role of the SNAO in the projected precipitation reductions. Most models correctly simulate the spatial pattern of the SNAO and the dry anomalies in northwest Europe that accompany the positive phase. The models also capture the concurrent wet conditions in the Mediterranean, but the amplitude of this signal is too weak, especially in the east. This error is related to the poor simulation of the upper-level circulation response to a positive SNAO, namely the observed trough over the Balkans that creates potential instability and favors precipitation. The SNAO is generally projected to trend upwards in CMIP3 models, leading to a consistent signal of precipitation reduction in NW Europe, but the intensity of the trend varies greatly across models, resulting in large uncertainties in the magnitude of the projected drying. In the Mediterranean, because the simulated influence of the SNAO is too weak, no precipitation increase occurs even in the presence of a strong SNAO trend, reducing confidence in these projections.
Resumo:
The degradation of the filaments is usually studied by checking the silicidation or carbonization status of the refractory metal used as catalysts, and their effects on the structural stability of the filaments. In this paper, it will be shown that the catalytic stability of a filament heated at high temperature is much shorter than its structural lifetime. The electrical resistance of a thin tungsten filament and the deposition rate of the deposited thin film have been monitored during the filament aging. It has been found that the deposition rate drops drastically once the quantity of dissolved silicon in the tungsten reaches the solubility limit and the silicides start precipitating. This manuscript concludes that the catalytic stability is only guaranteed for a short time and that for sufficiently thick filaments it does not depend on the filament radius.
Resumo:
Most ecosystems undergo substantial variation over the seasons, ranging from changes in abiotic features, such as temperature, light and precipitation, to changes in species abundance and composition. How seasonality varies along latitudinal gradients is not well known in freshwater ecosystems, despite being very important in predicting the effects of climate change and in helping to advance ecological understanding. Stream temperature is often well correlated with air temperature and influences many ecosystem features such as growth and metabolism of most aquatic organisms. We evaluated the degree of seasonality in ten river mouths along a latitudinal gradient for a set of variables, ranging from air and water temperatures, to physical and chemical properties of water and growth of an invasive fish species (eastern mosquitofish, Gambusia holbrooki ). Our results show that although most of the variation in air temperature was explained by latitude and season, this was not the case for water features, including temperature, in lowland Mediterranean streams, which depended less on season and much more on local factors. Similarly, although there was evidence of latitude-dependent seasonality in fish growth, the relationship was nonlinear and weak and the significant latitudinal differences in growth rates observed during winter were compensated later in the year and did not result in overall differences in size and growth. Our results suggest that although latitudinal differences in air temperature cascade through properties of freshwater ecosystems, local factors and complex interactions often override the water temperature variation with latitude and might therefore hinder projections of species distribution models and effects of climate change
Resumo:
Theoretical and practical aspects of the use of microwave-assisted strategies in chemistry are introduced for students using simple and safe experiments employing a domestic oven. Three procedures are proposed for evaluating the distribution of microwave radiation inside the microwave oven cavity: (1) variation of the volume of marshmallows; (2) drying of filter paper wetted with Co(II) solution, and (3) variation of water temperature, after microwave-assisted heating. These experiments establish the position with the highest incidence of microwave radiation in the oven cavity, which was chosen for the synthesis of salicylic acid acetate. This synthesis was performed in 5 min of heating and the yield was around 85%. All experiments can be carried out in a 4 h lab-session using low-cost instrumentation.
Resumo:
Al2O3 is the most abundantly produced nanomaterial and has been used in diverse fields, including the medical, military and industrial sectors. As there are concerns about the health effects of nanoparticles, it is important to understand how they interact with cells, and specifically with red blood cells. The hemolysis induced by three commercial nano-sized aluminum oxide particles (nanopowder 13 nm, nanopowder <50 nm and nanowire 2-6 nm × 200-400 nm) was compared to aluminum oxide and has been studied on erythrocytes from humans, rats and rabbits, in order to elucidate the mechanism of action and the influence of size and shape on hemolytic behavior. The concentrations inducing 50% hemolysis (HC50) were calculated for each compound studied. The most hemolytic aluminum oxide particles were of nanopowder 13, followed by nanowire and nanopowder 50. The addition of albumin to PBS induced a protective effect on hemolysis in all the nano-forms of Al2O3, but not on Al2O3. The drop in HC50 correlated to a decrease in nanomaterial size, which was induced by a reduction of aggregation Aluminum oxide nanoparticles are less hemolytic than other oxide nanoparticles, and behave differently depending on the size and shape of the nanoparticles. The hemolytic behavior of aluminum oxide nanoparticles differs from that of aluminum oxide.
Resumo:
Climate warming may lead to changes in the trophic structure and diversity of shallow lakes as a combined effect of increased temperature and salinity and likely increased strength of trophic interactions. We investigated the potential effects of temperature, salinity and fish on the plant-associated macroinvertebrate community by introducing artificial plants in eight comparable shallow brackish lakes located in two climatic regions of contrasting temperature: cold-temperate and Mediterranean. In both regions, lakes covered a salinity gradient from freshwater to oligohaline waters. We undertook day and night-time sampling of macroinvertebrates associated with the artificial plants and fish and free-swimming macroinvertebrate predators within artificial plants and in pelagic areas. Our results showed marked differences in the trophic structure between cold and warm shallow lakes. Plant-associated macroinvertebrates and free-swimming macroinvertebrate predators were more abundant and the communities richer in species in the cold compared to the warm climate, most probably as a result of differences in fish predation pressure. Submerged plants in warm brackish lakes did not seem to counteract the effect of fish predation on macroinvertebrates to the same extent as in temperate freshwater lakes, since small fish were abundant and tended to aggregate within the macrophytes. The richness and abundance of most plant-associated macroinvertebrate taxa decreased with salinity. Despite the lower densities of plant-associated macroinvertebrates in the Mediterranean lakes, periphyton biomass was lower than in cold temperate systems, a fact that was mainly attributed to grazing and disturbance by fish. Our results suggest that, if the current process of warming entails higher chances of shallow lakes becoming warmer and more saline, climatic change may result in a decrease in macroinvertebrate species richness and abundance in shallow lakes
Resumo:
This article deals with electrocatalysis and electrocatalysts for low temperature fuel cells and also with established means and methods in electrocatalyst research, development and characterization. The intention is to inform about the fundamentals, state of the art, research and development of noble metal electrocatalysts for fuel cells operating at low temperatures.
Resumo:
Condition-specific competition is widespread in nature. Species inhabiting heterogeneous environments tend to differ in competitive abilities depending on environmental stressors. Interactions between these factors can allow coexistence of competing species, which may be particularly important between invasive and native species. Here, we examine the effects of temperature on competitiveinteractions between invasive mosquitofish, Gambusia holbrooki, and an endemic Iberian toothcarp, Aphanius iberus. We compare the tendency to approach heterospecifics and food capture rates between these two species, and examine differences between sexes and species in aggressive interactions, at three different temperatures (19, 24 and 29uC) in three laboratory experiments. Mosquitofish exhibit much more aggression than toothcarp. We show that mosquitofish have the capacity to competitively displace toothcarp through interference competition and this outcome is more likely at higher temperatures. We also show a reversal in the competitive hierarchy through reduced food capture rate by mosquitofish at lower temperatures and suggest that these two types of competition may act synergistically to deprive toothcarp of food at higher temperatures. Males of both species carry out more overtly aggressive acts than females, which is probably related to the marked sexual dimorphism and associated mating systems of these two species. Mosquitofish may thus impact heavily on toothcarp, and competition from mosquitofish, especially in warmer summer months, may lead to changes in abundance of the native species and displacement to non-preferred habitats. Globally increasing temperatures mean that highly invasive, warm-water mosquitofish may be able to colonize environments from which they are currently excluded through reduced physiological tolerance to low temperatures. Research into the effects of temperature on interactions between native and invasive species is thus of fundamental importance
Resumo:
Al2O3 is the most abundantly produced nanomaterial and has been used in diverse fields, including the medical, military and industrial sectors. As there are concerns about the health effects of nanoparticles, it is important to understand how they interact with cells, and specifically with red blood cells. The hemolysis induced by three commercial nano-sized aluminum oxide particles (nanopowder 13 nm, nanopowder <50 nm and nanowire 2-6 nm × 200-400 nm) was compared to aluminum oxide and has been studied on erythrocytes from humans, rats and rabbits, in order to elucidate the mechanism of action and the influence of size and shape on hemolytic behavior. The concentrations inducing 50% hemolysis (HC50) were calculated for each compound studied. The most hemolytic aluminum oxide particles were of nanopowder 13, followed by nanowire and nanopowder 50. The addition of albumin to PBS induced a protective effect on hemolysis in all the nano-forms of Al2O3, but not on Al2O3. The drop in HC50 correlated to a decrease in nanomaterial size, which was induced by a reduction of aggregation Aluminum oxide nanoparticles are less hemolytic than other oxide nanoparticles, and behave differently depending on the size and shape of the nanoparticles. The hemolytic behavior of aluminum oxide nanoparticles differs from that of aluminum oxide.
Resumo:
The objective of the thesis was to examine the possibilities in designing better performing nozzles for the heatset drying oven in Forest Pilot Center. To achieve the objective, two predesigned nozzle types along with the replicas of the current nozzles in the heatset drying oven were tested on a pilot-scale dryer. During the runnability trials, the pilot dryer was installed between the last printing unit and the drying oven. The two sets of predesigned nozzles were consecutively installed in the dryer. Four web tension values and four different impingement air velocities were used and the web behavior during the trial points was evaluated and recorded. The runnability in all trial conditions was adequate or even good. During the heat transfer trials, each nozzle type was tested on at least two different nozzle-to-surface distances and four different impingement air velocities. In a test situation, an aluminum plate fitted with thermocouples was set below a nozzle and the temperature measurement of each block was logged. From the measurements, a heat transfer coefficient profile for the nozzle was calculated. The performance of each nozzle type in tested conditions could now be rated and compared. The results verified that the predesigned simpler nozzles were better than the replicas. For runnability reasons, there were rows of inclined orifices on the leading and trailing edges of the current nozzles. They were believed to deteriorate the overall performance of the nozzle, and trials were conducted to test this hypothesis. The perpendicular orifices and inclined orifices of a replica nozzle were consecutively taped shut and the performance of the modified nozzles was measured as before, and then compared to the performance of the whole nozzle. It was found out, that after a certain nozzle-to-surface distance the jets from the two nozzles would collide, which deteriorates the heat transfer.
Resumo:
Microfibrillated cellulose (MFC) is known to enhance strength properties of paper. Improved strength usually means increased bonding which is strongly connected to dimensional instability of paper. Dimensional instability is due to changes in moisture content of paper; when paper is moistened it expands and when dried, it shrinks. Hygroexpansion is linked to end-use problems and excessive drying shrinkage consumes strength potential. Effective use of materials requires controlling of these phenomena. There isn’t yet data concerning dimensional stability of papers containing MFC which restricts wider use of MFC. Main objective of the work was to evaluate dimensional stability of wood-free paper containing different amounts of MFC. Sheets were dried with different methods to see how drying strains effected on drying shrinkage and hygroexpansion. Also tensile strength was measured to find out the effect of MFC. Results were compared to sheets containing kraft fines and in some test points cationic starch was used alongside with MFC. MFC increased the dimensional instability of freely dried sheets. As the amounts of MFC increased the effects on dimensional stability became more severe. However the fineness of MFC didn’t play any important role. Both hygroexpansion and drying shrinkage were decreased with cationic starch addition. Prevention of drying shrinkage over powered the effects of additives on hygroexpansion. Tensile strength improved up till 7 % addition amount which could be set as the upper limit of MFC addition when paper preparation and tensile strength are concerned.
Resumo:
Soil respiration (SR) is a major component of ecosystems' carbon cycles and represents the second largest CO2 flux in the terrestrial biosphere. Soil temperature is considered to be the primary abiotic control on SR, whereas soil moisture is the secondary control factor. However, soil moisture can become the dominant control on SR in very wet or dry conditions. Determining the trigger that makes soil moisture as the primary control factor of SR will provide a deeper understanding on how SR changes under the projected future increase in droughts. Specific objectives of this study were (1) to investigate the seasonal variations and the relationship between SR and both soil temperature and moisture in a Mediterranean riparian forest along a groundwater level gradient; (2) to determine soil moisture thresholds at which SR is controlled by soil moisture rather than by temperature; (3) to compare SR responses under different tree species present in a Mediterranean riparian forest (Alnus glutinosa, Populus nigra and Fraxinus excelsior). Results showed that the heterotrophic soil respiration rate, groundwater level and 30 cm integral soil moisture (SM30) decreased significantly from the riverside moving uphill and showed a pronounced seasonality. SR rates showed significant differences between tree species, with higher SR for P. nigra and lower SR for A. glutinosa. The lower threshold of soil moisture was 20 and 17% for heterotrophic and total SR, respectively. Daily mean SR rate was positively correlated with soil temperature when soil moisture exceeded the threshold, with Q10 values ranging from 1.19 to 2.14; nevertheless, SR became decoupled from soil temperature when soil moisture dropped below these thresholds.
Resumo:
Leaves of Lippia alba were submitted to six different drying treatments, using air at ambient temperature and heated up to 80 °C. The essential oil was extracted by steam distillation and analyzed by GC-MS. For the dried leaves, the oil content was reduced by 12 to 17% when compared with the fresh plant (0.66%). The major oil component was citral, representing 76% for the fresh plant, and varying from 82 to 84% for the dried material. These results showed that L. alba can be submitted to a drying process of up to 80 ºC without degradation and/or loss of the major, [LC1] active component.