936 resultados para diagnostic-accuracy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phase resolved optical emission spectroscopy (PROES) bears considerable potential for diagnostics of RF discharges that give detailed insight of spatial and temporal variations of excitation processes. Based on phase and space resolved measurements of the population dynamics of excited states several diagnostic techniques have been developed. Results for a hydrogen capacitively coupled RF (CCRF) discharge are discussed as an example. The gas temperature, the degree of dissociation and the temporally and spatially resolved electron energy distribution function (EEDF) of energetic electrons (>12eV) are measured. Furthermore, the pulsed electron impact excitation during the field reversal phase, typical for hydrogen CCRF discharges, is exploited for measurements of atomic and molecular data like lifetimes of excited states, coefficients for radiationless collisional de-excitation (quenching coefficients), and cascading processes from higher electronic states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three plasma diagnostic methods, tunable infrared diode laser absorption spectroscopy, optical emission spectroscopy and microwave interferometry have been used to monitor concentrations of transient and stable molecules, CH3, CH4, C2H2, C2H6, and of electrons in capacitively coupled CH4-H-2-Ar radiofrequency (RF) plasmas (f(RF) = 13.56 MHz, p = 100 Pa, phi (total)= 66 sccm) for various discharge power values (P = 10-100 W) and gas mixtures. The degree of dissociation of the methane precursor varied between 3% and 60%. The methyl radical concentration was found to be in the order of 10(12) molecules cm(-3) and the electron concentration in the order of loll cm(-3). The methyl radical concentration and the concentrations of the stable C-2 hydrocarbons, C2H2 and C2H6, produced in the plasma, increased with discharge power. The fragmentation rates of the methane precursor and conversion rates to the measured C-2 hydrocarbons were estimated in dependence on discharge power. Radial distributions of the electron and methyl radical concentrations, and of the gas temperature were measured for the first time simultaneously in the plasma region between the discharge electrodes. The measurements allow us to draw qualitative conclusions on the main chemical processes and the plasma chemical reaction paths.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Indoor wireless network based client localisation requires the use of a radio map to relate received signal strength to specific locations. However, signal strength measurements are time consuming, expensive and usually require unrestricted access to all parts of the building concerned. An obvious option for circumventing this difficulty is to estimate the radio map using a propagation model. This paper compares the effect of measured and simulated radio maps on the accuracy of two different methods of wireless network based localisation. The results presented indicate that, although the propagation model used underestimated the signal strength by up to 15 dB at certain locations, there was not a signigicant reduction in localisation performance. In general, the difference in performance between the simulated and measured radio maps was around a 30 % increase in rms error