887 resultados para developmental pathways
Resumo:
Major outputs of the neocortex are conveyed by corticothalamic axons (CTAs), which form reciprocal connections with thalamocortical axons, and corticosubcerebral axons (CSAs) headed to more caudal parts of the nervous system. Previous findings establish that transcriptional programs define cortical neuron identity and suggest that CTAs and thalamic axons may guide each other, but the mechanisms governing CTA versus CSA pathfinding remain elusive. Here, we show that thalamocortical axons are required to guide pioneer CTAs away from a default CSA-like trajectory. This process relies on a hold in the progression of cortical axons, or waiting period, during which thalamic projections navigate toward cortical axons. At the molecular level, Sema3E/PlexinD1 signaling in pioneer cortical neurons mediates a "waiting signal" required to orchestrate the mandatory meeting with reciprocal thalamic axons. Our study reveals that temporal control of axonal progression contributes to spatial pathfinding of cortical projections and opens perspectives on brain wiring.
Resumo:
Whether the somatosensory system, like its visual and auditory counterparts, is comprised of parallel functional pathways for processing identity and spatial attributes (so-called what and where pathways, respectively) has hitherto been studied in humans using neuropsychological and hemodynamic methods. Here, electrical neuroimaging of somatosensory evoked potentials (SEPs) identified the spatio-temporal mechanisms subserving vibrotactile processing during two types of blocks of trials. What blocks varied stimuli in their frequency (22.5 Hz vs. 110 Hz) independently of their location (left vs. right hand). Where blocks varied the same stimuli in their location independently of their frequency. In this way, there was a 2x2 within-subjects factorial design, counterbalancing the hand stimulated (left/right) and trial type (what/where). Responses to physically identical somatosensory stimuli differed within 200 ms post-stimulus onset, which is within the same timeframe we previously identified for audition (De Santis, L., Clarke, S., Murray, M.M., 2007. Automatic and intrinsic auditory "what" and "where" processing in humans revealed by electrical neuroimaging. Cereb Cortex 17, 9-17.). Initially (100-147 ms), responses to each hand were stronger to the what than where condition in a statistically indistinguishable network within the hemisphere contralateral to the stimulated hand, arguing against hemispheric specialization as the principal basis for somatosensory what and where pathways. Later (149-189 ms) responses differed topographically, indicative of the engagement of distinct configurations of brain networks. A common topography described responses to the where condition irrespective of the hand stimulated. By contrast, different topographies accounted for the what condition and also as a function of the hand stimulated. Parallel, functionally specialized pathways are observed across sensory systems and may be indicative of a computationally advantageous organization for processing spatial and identity information.
Resumo:
Serum-free aggregating cell cultures of fetal rat telencephalon were examined by a combined biochemical and double-labeling immunocytochemical study for the developmental expression of glial fibrillary acidic protein (GFAP) and glutamine synthetase (GS). It was found that these two astroglial markers are co-expressed at different developmental stages in vitro. During the phase of cellular maturation (i.e. between days 14 and 34), GFAP levels and GS activity increase rapidly and in parallel. At the same time, the number of immunoreactive cells increase while the long and thick processes staining in early cultures gradually disappear. The present results demonstrate that in this particular cell culture system only one type of astrocytes develops which expresses both GFAP and GS and which attains a relatively high degree of maturation.
Resumo:
Summary The best described physiological function of low-density lipoproteins (LDL) is to transport cholesterol to target tissues. LDL deliver their cholesterol cargo to cells following their interaction with the LDL receptor. LDL, when their vascular concentrations increase, have also been implicated in pathologies such as atherosclerosis. Among the cell types that are found in blood vessels, endothelial and smooth muscle cells have dominated cellular research on atherosclerotic mechanisms and LDL activation of signaling pathways, while very little is known about adventitial fibroblast activation caused by elevated lipoprotein levels. Since fibroblasts participate in wound repair and since it has recently been recognized that fibroblasts may play pivotal roles in vascular remodeling and repair of injury, we assessed whether lipoproteins affect fibroblast function. We have found that LDL specifically mediate the activation of a class of mitogen-activated protein kinases (MAPKs): the p38 MAPKs. The activation of this pathway in turn modulates cell shape by promoting lamellipodia formation and extensive cell spreading. This is of particular interest because it provides a mechanism by which LDL can promote wound healing or vessel wall remodeling as observed during the development of atherosclerosis. In order to understand the molecular mechanisms by which LDL induce p38 activation we searched for the component in the LDL particle responsible for the induction of this pathway. We found that cholesterol is the major component of lipoprotein particles that mediates their ability to stimulate the p38 MAPK pathway. Furthermore, we investigated the cellular mechanisms underlying the ability of LDL to induce cell shape changes and whether this could participate in wound repair. Our recent data demonstrates that the capacity of LDL to induce fibroblast spreading relies on their ability to stimulate IL-8 secretion, which in turn leads to accelerated wound healing. LDL-induced IL-8 production and subsequent wound closure are impaired upon inhibition of the p38 MAPK pathway indicating that the LDL-induced spreading and accelerated wound sealing rely on the ability of LDL to stimulate IL-8 secretion in a p38 MAPK-dependent manner. Therefore, regulation of fibroblast shape and migration by lipoproteins may be relevant to atherosclerosis that is characterized by increased LDL-cholesterol levels, IL-8 production and extensive remodeling of the vessel wall. Résumé: La fonction physiologique des lipoprotéines à faible densité (LDL) la mieux décrite est celle du transport du cholestérol aux tissus cibles. Les LDL livrent leur cargaison de cholestérol aux cellules après leur interaction avec le récepteur au LDL. Une concentration vasculaire des LDL augmenté est également impliquée dans le développement de l'athérosclérose. Parmi les types de cellule présents dans les vaisseaux sanguins, les cellules endothéliales et les cellules du muscle lisse ont dominé la recherche cellulaire sur les mécanismes athérosclérotiques et sur l'activation par les LDL des voies de signalisation intracellulaire. A l'inverse peu de choses sont connues sur l'activation des fibroblastes de l'adventice par les lipoprotéines. Puisqu'il a été récemment reconnu que les fibroblastes peuvent jouer un rôle central dans la remodélisation vasculaire et la réparation tissulaire, nous avons étudié si les lipoprotéines affectent la fonction des fibroblastes. Nous avons constaté que les LDL activent spécifiquement une classe de protéines kinases: les p38 MAPK (mitogen-activated protein kinases). L'activation de cette voie module à son tour la forme de la cellule en favorisant la formation de lamellipodes et l'agrandissement des cellules. Cela a un intérêt particulier car il fournit un mécanisme par lequel les LDL peuvent promouvoir la cicatrisation ou la remodélisation des parois vasculaires comme observés lors du développement de l'athérosclérose. Pour comprendre les mécanismes moléculaires par lesquels les LDL provoquent l'activation des p38 MAPK, nous avons cherché à identifier les composants dans la particule de LDL responsables de l'induction de cette voie. Nous avons constaté que le cholestérol est l'élément principal des particules de lipoprotéine qui contrôle leur capacité à stimuler la voie des p38 MAPK. En outre, nous avons examiné les mécanismes cellulaires responsables de la capacité des LDL à induire des changements dans la forme des cellules. Nos données récentes démontrent que la capacité des LDL à induire l'agrandissement des cellules, ainsi que leur aptitude à favoriser la cicatrisation, reposant sur leur capacité à stimuler la sécrétiond'IL-8. La production d'IL-8 induite par les LDL est bloquée par l'inhibition de la voie p38 MAPK, ce qui indique que l'étalement des cellules induit par les LDL ainsi que l'accélération de la cicatrisation sont liés à la capacité des LDL à stimuler la sécrétion d'IL8 via l'activation des p38 MAPK. La régulation de la forme et de la migration des fibroblastes par les lipoprotéines peuvent donc participer au développement de l'athérosclérose qui est caractérisée par l'augmentation des niveaux de production de LDL-cholestérol et d'IL-8 ainsi que par une remodélisation augmentée de la paroi du vaisseau.
Resumo:
Introduction: Osteoporosis presenting as low-impact fractures to traumatology units is often undiagnosed and under-treated. Results from the Osteocare study in Lausanne (a nurse based intervention, passive pathway) showed that only 19% of patients received management for osteoporosis, and in the literature [1], the rate is between 10-25%. We have evaluated a different management concept, based on the systematic assessment of patients with osteoporotic fractures during and after hospitalization (active pathway). Methods: Inpatients admitted to the Department of Musculoskeletal Medicine for a fragility fracture were identified by a nurse according to a predefined questionnaire and were then clinically evaluated by a doctor. Based on the results, a management plan was proposed to the patients. Patients could choose between follow up either by their GP or by the Centre of Bone Disease of the CHUV. For patients who chose follow-up in our Centre, we assessed their adherence to medical follow-up 1 year inclusion. The results of patients who had been evaluated in our cohort between the 1 November 2008 and the 1 December 2009 were analysed. Results: 573 inpatients received specific management of their osteoporotic fracture over 18 months. The mean age was 77 y (31-99), 81% were women (203 hip fractures, 40 pelvis fractures, 101 arm fractures, 57 vertebral fractures, 63 ankle fractures, and 25 others sites). During the study period, 303 patients received a proposition of a specific treatment. 39 (13%) chose a follow up with the GP, 19 (6%) dead and 245 (81%) preferred a follow up in our Centre. After 1 year, 166 (67%) patients are under follow up in our outpatient clinic. Conclusion: With an active clinical pathway that starts during the hospitalization, consisting on a nursing evaluation followed by a medical consultation by an expert in osteoporosis, the adherence increased from 19% to 67% in terms of follow up. These results lead us to propose a consultation with a doctor experienced in osteoporosis after all osteoporotic fractures.
Resumo:
The t(15;17) chromosomal translocation, specific for acute promyelocytic leukemia (APL), fuses the PML gene to the retinoic acid receptor alpha (RAR alpha) gene, resulting in expression of a PML-RAR alpha hybrid protein. In this report, we analyzed the nature of PML-RAR alpha-containing complexes in nuclear protein extracts of t(15;17)-positive cells. We show that endogenous PML-RAR alpha can bind to DNA as a homodimer, in contrast to RAR alpha that requires the retinoid X receptor (RXR) dimerization partner. In addition, these cells contain oligomeric complexes of PML-RAR alpha and endogenous RXR. Treatment with retinoic acid results in a decrease of PML-RAR alpha protein levels and, as a consequence, of DNA binding by the different complexes. Using responsive elements from various hormone signaling pathways, we show that PML-RAR alpha homodimers have altered DNA-binding characteristics when compared to RAR alpha-RXR alpha heterodimers. In transfected Drosophila SL-3 cells that are devoid of endogenous retinoid receptors PML-RAR alpha inhibits transactivation by RAR alpha-RXR alpha heterodimers in a dominant fashion. In addition, we show that both normal retinoid receptors and the PML-RAR alpha hybrid bind and activate the peroxisome proliferator-activated receptor responsive element from the Acyl-CoA oxidase gene, indicating that retinoids and peroxisome proliferator receptors may share common target genes. These properties of PML-RAR alpha may contribute to the transformed phenotype of APL cells.
Resumo:
Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≥140 mm Hg systolic blood pressure or ≥90 mm Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention.
Resumo:
The genetics and pathogenesis of splenic marginal zone lymphoma are poorly understood. The lymphoma lacks chromosome translocation, and ~30% of cases are featured by 7q deletion, but the gene targeted by the deletion is unknown. A recent study showed inactivation of A20, a 'global' NF-kB negative regulator, in 1 of 12 splenic marginal zone lymphoma. To investigate further whether deregulation of the NF-kB pathway plays a role in the pathogenesis of splenic marginal zone lymphoma, we screened several NF-kB regulators for genetic changes by PCR and sequencing. Somatic mutations were found in A20 (6/46=13%), MYD88 (6/46=13%), CARD11 (3/34=8.8%), but not in CD79A, CD79B and ABIN1. Interestingly, these genetic changes are largely mutually exclusive from each other and MYD88 mutation was also mutually exclusive from 7q deletion. These results strongly suggest that deregulation of the TLR (toll like receptor) and BCR (B-cell receptor) signalling pathway may play an important role in the pathogenesis of splenic marginal zone lymphoma.
Resumo:
Adult height is a model polygenic trait, but there has been limited success in identifying the genes underlying its normal variation. To identify genetic variants influencing adult human height, we used genome-wide association data from 13,665 individuals and genotyped 39 variants in an additional 16,482 samples. We identified 20 variants associated with adult height (P < 5 x 10(-7), with 10 reaching P < 1 x 10(-10)). Combined, the 20 SNPs explain approximately 3% of height variation, with a approximately 5 cm difference between the 6.2% of people with 17 or fewer 'tall' alleles compared to the 5.5% with 27 or more 'tall' alleles. The loci we identified implicate genes in Hedgehog signaling (IHH, HHIP, PTCH1), extracellular matrix (EFEMP1, ADAMTSL3, ACAN) and cancer (CDK6, HMGA2, DLEU7) pathways, and provide new insights into human growth and developmental processes. Finally, our results provide insights into the genetic architecture of a classic quantitative trait.
Resumo:
Immunotherapy is defined as the treatment of disease by inducing, enhancing, or suppressing an immune response, whereas preventive vaccination is intended to prevent the development of diseases in healthy subjects. Most successful prophylactic vaccines rely on the induction of high titers of neutralizing antibodies. It is generally thought that therapeutic vaccination requires induction of robust T-cell mediated immunity. The diverse array of potential or already in use immunotherapeutic and preventive agents all share the commonality of stimulating the immune system. Hence, measuring those vaccination-induced immune responses gives the earliest indication of vaccine take and its immune modulating effects.
Resumo:
River-dwelling fish, such as European graylings (Thymallus thymallus), are susceptible to changes in climate because they can often not avoid suboptimal temperatures, especially during early developmental stages. We analyzed data collected in a 62-year-long (1948-2009) population monitoring program. Male and female graylings were sampled about three times/week during the yearly spawning season in order to follow the development of the population. The occurrence of females bearing ripe eggs was used to approximate the timing of each spawning season. In the last years of the study, spawning season was more than 3 weeks earlier than in the first years. This shift was linked to increasing water temperatures as recorded over the last 39 years with a temperature logger at the spawning site. In early spring water temperatures rose more slowly than in later spring. Thus, embryos and larvae were exposed to increasingly colder water at a stage that is critical for sex determination and pathogen resistance in other salmonids. In summer, however, fry were exposed to increasingly warmer temperatures. The changes in water temperatures that we found embryos, larvae, and fry were exposed to could be contributing to the decline in abundance that has occurred over the last 30-40 years.
Resumo:
The oscillation of neuronal circuits reflected in the EEG gamma frequency may be fundamental to the perceptual process referred to as binding (the integration of various thoughts and perceptions into a coherent picture). The aim of our study was to expand our knowledge of the developmental course ofEEG gamma in the auditory modality. 2 We investigated EEG 40 Hz gamma band responses (35.2 to 43.0 Hz) using an auditory novelty oddball paradigm alone and with a visual-number-series distracter task in 208 participants as a function of age (7 years to adult) at 9 sites across the sagital and lateral axes (F3, Fz, F4, C3, Cz, C4, P3, Pz, P4). Gamma responses were operationally defined as change in power or a change in phase synchrony level from baseline within two time windows. The evoked gamma response was defined as a significant change from baseline occurring between 0 to 150 ms after stimulus onset; the induced gamma response was measured from 250 to 750 ms after stimulus onset. A significant evoked gamma band response was found when measuring changes in both power and phase synchrony. The increase in both measures was maximal at frontal regions. Decreases in both measures were found when participants were distracted by a secondary task. For neither measure were developmental effects noted. However, evoked gamma power was significantly enhanced with the presentation of a novel stimulus, especially at the right frontal site (F4); frontal evoked gamma phase synchrony also showed enhancement for novel stimuli but only for our two oldest age groups (16-18 year olds and adults). Induced gamma band responses also varied with task-dependent cognitive stimulus properties. In the induced gamma power response in all age groups, target stimuli generated the highest power values at the parietal region, while the novel stimuli were always below baseline. Target stimuli increased induced synchrony in all regions for all participants, but the novel stimulus selectively affected participants dependent on their age and gender. Adult participants, for example, exhibited a reduction in gamma power, but an increase in synchrony to the novel stimulus within the same region. Induced gamma synchrony was more sensitive to the gender of the participant than was induced gamma power. While induced gamma power produced little effects of age, gamma synchrony did have age effects. These results confirm that the perceptual process which regulates gamma power is distinct from that which governs the synchronization for neuronal firing, and both gamma power and synchrony are important factors to be considered for the "binding" hypothesis. However, there is surprisingly little effect of age on the absolute levels of or distribution of EEG gamma in the age range investigated.
Resumo:
My research permitted me to reexamine my recent evaluations of the Leaf Project given to the Foundation Year students during the fall semester of 1997. My personal description of the drawing curriculum formed part of the matrix of the Foundation Core Studies at the Ontario College of Art and Design. Research was based on the random selection of 1 8 students distributed over six of my teaching groups. The entire process included a representation of all grade levels. The intent of the research was to provide a pattern of alternative insights that could provide a more meaningful method of evaluation for visual learners in an art education setting. Visual methods of learning are indeed complex and involve the interplay of many sensory modalities of input. Using a qualitative method of research analysis, a series of queries were proposed into a structured matrix grid for seeking out possible and emerging patterns of learning. The grid provided for interrelated visual and linguistic analysis with emphasis in reflection and interconnectedness. Sensory-based modes of learning are currently being studied and discussed amongst educators as alternative approaches to learning. As patterns emerged from the research, it became apparent that a paradigm for evaluation would have to be a progressive profile of the learning that would take into account many of the different and evolving learning processes of the individual. A broader review of the student's entire development within the Foundation Year Program would have to have a shared evaluation through a cross section of representative faculty in the program. The results from the research were never intended to be conclusive. We realized from the start that sensory-based learning is a difficult process to evaluate from traditional standards used in education. The potential of such a process of inquiry permits the researcher to ask for a set of queries that might provide for a deeper form of evaluation unique to the students and their related learning environment. Only in this context can qualitative methods be used to profile their learning experiences in an expressive and meaningful manner.
Resumo:
The main objective of the present investigation was to continue the research initiated by
Hay and colleagues (2004) in examining the efficacy of the Children's Self-Perceptions
of Adequacy in and Predilection for Physical Activity (CSAPPA) scale as a proxy for the
short form of the Bruininks-Oseretsky Test of Motor Proficiency (BOTMP-SF) in
screening for Developmental Coordination Disorder (DCD) in children. To better
appreciate DCD knowledge outside Canada, the measurements of this investigation were
expanded in Greece. A translated Greek CSAPP A scale and the BOTMP-SF were
administered for the first time in Greek children. A second objective was to investigate
the relationship between DCD and various risk factors of coronary artery disease (CAD)
in Canadian and Greek children. A sample of 591 (Ms=322; Fs=269) Canadian and 392
(Ms=211; Fs=181) Greek children, aged 9 to 13 years, consented to the BOTMP-SF,
CSAPP A Scale, participation in physical activity questionnaire, Leger 20-meter
Multistage Shuttle Run test, and body fat using bioelectric impedance. Prevalence of
DCD in Canada and Greece was 8% and 19%, respectively. Significant agreement
(p