914 resultados para detention as a last resort
Resumo:
Overview on the settlement history of the Syrian Jezirah and the Middle Euphrates Valley in the period ca. 2300-1900 BC.
Resumo:
Northwestern North America has one of the highest rates of recent temperature increase in the world, but the putative “divergence problem” in dendroclimatology potentially limits the ability of tree-ring proxy data at high latitudes to provide long-term context for current anthropogenic change. Here, summer temperatures are reconstructed from a Picea glauca maximum latewood density (MXD) chronology that shows a stable relationship to regional temperatures and spans most of the last millennium at the Firth River in northeastern Alaska. The warmest epoch in the last nine centuries is estimated to have occurred during the late twentieth century, with average temperatures over the last 30 yr of the reconstruction developed for this study [1973–2002 in the Common Era (CE)] approximately 1.3° ± 0.4°C warmer than the long-term preindustrial mean (1100–1850 CE), a change associated with rapid increases in greenhouse gases. Prior to the late twentieth century, multidecadal temperature fluctuations covary broadly with changes in natural radiative forcing. The findings presented here emphasize that tree-ring proxies can provide reliable indicators of temperature variability even in a rapidly warming climate.
Resumo:
Previous studies have either exclusively used annual tree-ring data or have combined tree-ring series with other, lower temporal resolution proxy series. Both approaches can lead to significant uncertainties, as tree-rings may underestimate the amplitude of past temperature variations, and the validity of non-annual records cannot be clearly assessed. In this study, we assembled 45 published Northern Hemisphere (NH) temperature proxy records covering the past millennium, each of which satisfied 3 essential criteria: the series must be of annual resolution, span at least a thousand years, and represent an explicit temperature signal. Suitable climate archives included ice cores, varved lake sediments, tree-rings and speleothems. We reconstructed the average annual land temperature series for the NH over the last millennium by applying 3 different reconstruction techniques: (1) principal components (PC) plus second-order autoregressive model (AR2), (2) composite plus scale (CPS) and (3) regularized errors-in-variables approach (EIV). Our reconstruction is in excellent agreement with 6 climate model simulations (including the first 5 models derived from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) and an earth system model of intermediate complexity (LOVECLIM), showing similar temperatures at multi-decadal timescales; however, all simulations appear to underestimate the temperature during the Medieval Warm Period (MWP). A comparison with other NH reconstructions shows that our results are consistent with earlier studies. These results indicate that well-validated annual proxy series should be used to minimize proxy-based artifacts, and that these proxy series contain sufficient information to reconstruct the low-frequency climate variability over the past millennium.
Resumo:
Purpose: The objective of this systematic review was to assess and compare the survival and complication rates of implant-supported prostheses reported in studies published in the year 2000 and before, to those reported in studies published after the year 2000. Materials and Methods: Three electronic searches complemented by manual searching were conducted to identify 139 prospective and retrospective studies on implant-supported prostheses. The included studies were divided in two groups: a group of 31 older studies published in the year 2000 or before, and a group of 108 newer studies published after the year 2000. Survival and complication rates were calculated using Poisson regression models, and multivariable robust Poisson regression was used to formally compare the outcomes of older and newer studies. Results: The 5-year survival rate of implant-supported prostheses was significantly increased in newer studies compared with older studies. The overall survival rate increased from 93.5% to 97.1%. The survival rate for cemented prostheses increased from 95.2% to 97.9%; for screw-retained reconstruction, from 77.6% to 96.8%; for implant-supported single crowns, from 92.6% to 97.2%; and for implant-supported fixed dental prostheses (FDPs), from 93.5% to 96.4%. The incidence of esthetic complications decreased in more recent studies compared with older ones, but the incidence of biologic complications was similar. The results for technical complications were inconsistent. There was a significant reduction in abutment or screw loosening by implant-supported FDPs. On the other hand, the total number of technical complications and the incidence of fracture of the veneering material was significantly increased in the newer studies. To explain the increased rate of complications, minor complications are probably reported in more detail in the newer publications. Conclusions: The results of the present systematic review demonstrated a positive learning curve in implant dentistry, represented in higher survival rates and lower complication rates reported in more recent clinical studies. The incidence of esthetic, biologic, and technical complications, however, is still high. Hence, it is important to identify these complications and their etiology to make implant treatment even more predictable in the future.
Resumo:
We have measured the CO2 concentration of air occluded during the last 40,000 years in the deep Siple Dome A ( hereafter Siple Dome) ice core, Antarctica. The general trend of CO2 concentration from Siple Dome ice follows the temperature inferred from the isotopic composition of the ice and is mostly in agreement with other Antarctic ice core CO2 records. CO2 rose initially at similar to 17.5 kyr B. P. ( thousand years before 1950), decreased slowly during the Antarctic Cold Reversal, rose during the Younger Dryas, fell to a local minimum at around 8 kyr B. P., and rose continuously since then. The CO2 concentration never reached steady state during the Holocene, as also found in the Taylor Dome and EPICA Dome C ( hereafter Dome C) records. During the last glacial termination, a lag of CO2 versus Siple Dome isotopic temperature is probable. The Siple Dome CO2 concentrations during the last glacial termination and in the Holocene are at certain times greater than in other Antarctic ice cores by up to 20 ppm (mumol CO2/mol air). While in situ production of CO2 is one possible cause of the sporadic elevated levels, the mechanism leading to the enrichment is not yet clear.
Resumo:
This overview examines available circum-Antarctic glacial history archives on land, related to developments after the Last Glacial Maximum (LGM). It considers the glacial-stratigraphic and morphologic records and also biostratigraphical information from moss banks, lake sediments and penguin rookeries, with some reference to relevant glacial marine records. It is concluded that Holocene environmental development in Antarctica differed from that in the Northern Hemisphere. The initial deglaciation of the shelf areas surrounding Antarctica took place before 10000 C-14 yrs before present(sp), and was controlled by rising global sea level. This was followed by the deglaciation of some presently ice-free inner shelf and land areas between 10000 and 8000 yr sp. Continued deglaciation occurred gradually between 8000 yr sp and 5000 yr sp. Mid-Holocene glacial readvances are recorded from various sites around Antarctica. There are strong indications of a circum-Antarctic climate warmer than today 4700-2000 yr sp. The best dated records from the Antarctic Peninsula and coastal Victoria Land suggest climatic optimums there from 4000-3000 yr sp and 3600-2600 yr sp, respectively. Thereafter Neoglacial readvances are recorded. Relatively limited glacial expansions in Antarctica during the past few hundred years correlate with the Little Ice Age in the Northern Hemisphere.
Resumo:
Interior ice elevations of the West Antarctic Ice Sheet (WAIS) during the last glaciation, which can serve as benchmarks for ice-sheet models, are largely unconstrained. Here we report past ice elevation data from the Ohio Range, located near the WAIS divide and the onset region of the Mercer Ice Stream. Cosmogenic exposure ages of glacial erratics that record a WAIS highstand similar to 125 m above the present surface date to similar to 11.5 ka. The deglacial chronology prohibits an interior WAIS contribution to meltwater pulse 1A. Our observational data of ice elevation changes compare well with predictions of a thermomechanical ice-sheet model that incorporates very low basal shear stress downstream of the present day grounding line. We conclude that ice streams in the Ross Sea Embayment had thin, low-slope profiles during the last glaciation and interior WAIS ice elevations during this period were several hundred meters lower than previous reconstructions.
Resumo:
This study presents the first consolidation of palaeoclimate proxy records from multiple archives to develop statistical rainfall reconstructions for southern Africa covering the last two centuries. State-of-the-art ensemble reconstructions reveal multi-decadal rainfall variability in the summer and winter rainfall zones. A decrease in precipitation amount over time is identified in the summer rainfall zone. No significant change in precipitation amount occurred in the winter rainfall zone, but rainfall variability has increased over time. Generally synchronous rainfall fluctuations between the two zones are identified on decadal scales, with common wet (dry) periods reconstructed around 1890 (1930). A strong relationship between seasonal rainfall and sea surface temperatures (SSTs) in the surrounding oceans is confirmed. Coherence among decadal-scale fluctuations of southern African rainfall, regional SST, SSTs in the Pacific Ocean and rainfall in south-eastern Australia suggest SST-rainfall teleconnections across the southern hemisphere. Temporal breakdowns of the SST-rainfall relationship in the southern African regions and the connection between the two rainfall zones are observed, for example during the 1950s. Our results confirm the complex interplay between large-scale teleconnections, regional SSTs and local effects in modulating multi-decadal southern African rainfall variability over long timescales.
Resumo:
A well-dated suite of Lake Van climate-proxy data covering the last 360 ka documents environmental changes over 4 glacial/interglacial cycles in Eastern Anatolia, Turkey. The picture of cold and dry glacials and warm and wet interglacials emerging from pollen, organic carbon, authigenic carbonate content, elemental profiling by XRF and lithological analyses is inconsistent with classical interpretation of ox- ygen isotopic composition of carbonates pointing to a more complex pattern in Lake Van region. Detailed analysis of glacial terminations allows for the constraining of a depositional model explaining different patterns observed in all the proxies. We hypothesize that variations in relative contribution of rainfall, snowmelt and glacier meltwater recharging the basin have a very important role for all sedimentary processes in Lake Van. Lake level of glacial Lake Van, predominantly fed by snowmelt, was low, the water column was oxic, and carbonates precipitating in the epilimnion recorded the light isotopic signature of inflow. During terminations, increasing rainfall and significant supply of mountain glaciers' meltwater contributed to lake level rise. Increased rainfall enhanced density gradients in the water column, and hindered mixing leading to development of bottom-water anoxia. Carbonates precipitating during terminations show large fluctuations in their isotopic composition. Full interglacial conditions in Lake Van are characterized by high or slowly falling lake level. Rainfall and snowmelt feed the lake but due to re-established mixing, the isotopic composition of authigenic carbonates is heavier and closer to that of evaporation-influenced lake water than that of runoff representing snowmelt and atmospheric precipitation.
Resumo:
Anthropogenic warming is expected to drive oxygen out of the ocean as the water temperature rises and the rate of exchange between subsurface waters and the atmosphere slows due to enhanced upper ocean density stratification. Observations from recent decades are tantalizingly consistent with this prediction, though these changes remain subtle in the face of natural variability. Earth system model projections unanimously predict a long-term decrease in the global ocean oxygen inventory, but show regional discrepancies, particularly in the most oxygen-depleted waters, owing to the complex interplay between oxygen supply pathways and oxygen consumption. The geological record provides an orthogonal perspective, showing how the oceanic oxygen content varied in response to prior episodes of climate change. These past changes were much slower than the current, anthropogenic change, but can help to appraise sensitivities, and point toward potentially dominant mechanisms of change. Consistent with the model projections, marine sediments recorded an overall expansion of low-oxygen waters in the upper ocean as it warmed at the end of the last ice age. This expansion was not linearly related with temperature, though, but reached a deoxygenation extreme midway through the warming. Meanwhile, the deep ocean became better oxygenated, opposite the general expectation. These observations require that significant changes in apparent oxygen utilization occurred, suggesting that they will also be important in the future.
Resumo:
John H. Martin, who discovered widespread iron limitation of ocean productivity, proposed that dust-borne iron fertilization of Southern Ocean phytoplankton caused the ice age reduction in atmospheric carbon dioxide (CO2). In a sediment core from the Subantarctic Atlantic, we measured foraminifera-bound nitrogen isotopes to reconstruct ice age nitrate consumption, burial fluxes of iron, and proxies for productivity. Peak glacial times and millennial cold events are characterized by increases in dust flux, productivity, and the degree of nitrate consumption; this combination is uniquely consistent with Subantarctic iron fertilization. The associated strengthening of the Southern Ocean’s biological pump can explain the lowering of CO2 at the transition from mid-climate states to full ice age conditions as well as the millennial-scale CO2 oscillations.