771 resultados para delta-12 fatty acid desaturase
Resumo:
The present study aims to find the effect of freezing Time on the quality of Cobia (Rastrelliger kanagurta) and Indian Squid in commercial scale during freezing and subsequent frozen storage (−18◦C). Total time for freezing was significantly different (P<0.05) between the Cobia and Indian squid samples. The difference in the freezing time could be attributed to the varied quality of the 2 samples. Upon freezing, the moisture content decreased in Indian Squide samples compared to Cobia freezer where protein content decreased in both the samples. Upon freezing and during frozen storage, lipid oxidation products (peroxide value, and free fatty acid value) and volatile bases (total volatile base nitrogen) showed an increasing trend in both the samples with values slightly higher in Indian squid samples compared to cobia frozen samples. The total plate counts showed a significantly (P<0.05) decreasing trend in both the samples. K value did not show any significant (P<0.05) difference between the samples whereas the histamine formation was significantly (P<0.05) increased in Indian squid frozen samples compared to cobia samples. The taste and overall acceptability was significantly different (P<0.05) in cobia samples compared to Indian squid frozen samples on 5th month. Both samples were in acceptable condition up to 5 month but the Cobia frozen samples quality was slightly better than the air blast frozen samples.
Resumo:
In this study microbiological , chemical quality and fatty acid composition of grass carp (Ctenopharyngodon idella) fillets treated by dipping in sodium acetate (%1 and %3), nisin (% 0.1 and % 0.2) and combination of sodium acetate and nisin was evaluated during 16 days of refrigerated of 4°C Antilisterial effect of nisin was enhanced with the increased concentration of sodium acetate. At day 12 post storage, Listeria monocytogenese count was higher in the control group than the recommended value, however in sodium acetate and nisin treated samples, the count was lower (5.17-5.91 log cfu/g). With increasing the concentrations of sodium acetate, mesophilic counts were lower. Regarding nisin, better results was obtained by applying %0.1 nisin. Greater inhibition of mesophile bacteria was observed when combination treatment was used. The number of lactobacillus was lower when higher concentrations of sodium acetate and nisin were used. Total Volatile Nitrogen values at the end of the experiment were lower in the samples treated with both nisin and sodium acetate and the better results were obtained in combination treatments. Peroxide (PV) at the end of the experiment was 1.9 meq/kg in control, and the lowest values were observed for the treatments 3(%0 sodium acetate +% 0.2 nisin) and 9(%3 sodium acetate +% 0.2 nisin) between 1.08 and 1.62 meq/kg without significant difference. Thiobarbituric acid (TBA) levels at the end of experiment have been shown to be 0.46 mg malonaldehyde per kg in the control. On the other hand treatments 9 had the TBA values of 0.19 mg malonaldehyde per kg which was significantly lower than that of control. Polyunsaturated fatty acids increased by increasing the sodium acetate doses and instead saturated fatty acids and n-6/n-3 ratio decreased. The ratio of UFA/SFA and also C22:6/C16:0 increased when a higher concentration of sodium acetate has been used. The best result obtained by using 3% of sodium acetate but no such relation with nisin was observed.
Resumo:
An increasin g interest in biofuel applications in modern engines requires a better understanding of biodiesel combustion behaviour. Many numerical studies have been carried out on unsteady combustion of biodiesel in situations similar to diesel engines, but very few studies have been done on the steady combustion of biodiesel in situations similar to a gas turbine combustor environment. The study of biodiesel spray combustion in gas turbine applications is of special interest due to the possible use of biodiesel in the power generation and aviation industries. In modelling spray combustion, an accurate representation of the physical properties of the fuel is a first important step, since spray formation is largely influenced by fuel properties such as viscosity, density, surface tension and vapour pressure. In the present work, a calculated biodiesel properties database based on the measured composition of Fatty Acid Methyl Esters (FAME) has been implemented in a multi-dimensional Computational Fluid Dynamics (CFD) spray simulation code. Simulations of non-reacting and reacting atmospheric-pressure sprays of both diesel and biodiesel have been carried out using a spray burner configuration for which experimental data is available. A pre-defined droplet size probability density function (pdf) has been implemented together with droplet dynamics based on phase Doppler anemometry (PDA) measurements in the near-nozzle region. The gas phase boundary condition for the reacting spray cases is similar to that of the experiment which employs a plain air-blast atomiser and a straight-vane axial swirler for flame stabilisation. A reaction mechanism for heptane has been used to represent the chemistry for both diesel and biodiesel. Simulated flame heights, spray characteristics and gas phase velocities have been found to compare well with the experimental results. In the reacting spray cases, biodiesel shows a smaller mean droplet size compared to that of diesel at a constant fuel mass flow rate. A lack of sensitivity towards different fuel properties has been observed based on the non-reacting spray simulations, which indicates a need for improved models of secondary breakup. By comparing the results of the non-reacting and reacting spray simulations, an improvement in the complexity of the physical modelling is achieved which is necessary in the understanding of the complex physical processes involved in spray combustion simulation. Copyright © 2012 SAE International.
Resumo:
As a kind of waste collected from restaurants, trap grease is a chemically challenging feedstock for biodiesel production for its high free fatty acid (FFA) content. A central composite design was used to evaluate the effect of methanol quantity, acid concentration and reaction time on the synthesis of biodiesel from the trap grease with 50% free fatty acid, while the reaction temperature was selected at 95 degrees C. Using response surface methodology, a quadratic polynomial equation was obtained for ester content by multiple regression analysis. Verification experiments confirmed the validity of the predicted model. To achieve the highest ester content of crude biodiesel (89.67%), the critical values of the three variables were 35.00 (methanol-to-oil molar ratio), 11.27 wt% (catalyst concentration based on trap grease) and 4.59 h (reaction time). The crude biodiesel could be purified by a second distillation to meet the requirement of biodiesel specification of Korea.
Resumo:
A Gram-positive, aerobic, non-motile, mesophilic strain, djl-6(T), able to degrade carbendazim, was isolated from a carbendazim-contaminated soil sample from Jiangsu province, China. The taxonomic position of this isolate was analysed by using a polyphasic approach. Chemotaxonomic analysis including peptidoglycan type, diagnostic sugar composition, fatty acid profile, menaquinones, polar lipids and mycolic acids showed that the characteristics of strain djl-6(T) were in good agreement with those of the genus Rhodococcus. DNA-DNA hybridization showed that it had low genomic relatedness with Rhodococcus baikonurensis DSM 44587(T) (31.8%), Rhodococcus erythropolis DSM 43066(T) (23.8%) and Rhodococcus globerulus DSM 43954(T) (117.7%), the three type strains to which strain djl-6(T) was most closely related based on 16S rRNA gene sequence analysis (99.78, 99.25 and 98.91% similarity, respectively). Based on the phenotypic properties and DNA-DNA hybridization data, strain djl-6(T) (=CGMCC 1.6580(T) =KCTC 19205(T)) is proposed as the type strain of a novel Rhodococcus species, Rhodococcus qingshengii sp. nov.
Resumo:
MgO supported copper salt of molybdovanadophosphoric acid H4PMo11VO40 catalysts were prepared in alcohol by impregnation and the carbon deposition over these catalysts during the n-hexanol oxidation reaction was studied. The coke predominantly deposited on the catalyst surface in the form of CH., and it was not found that it caused the deactivation of the catalyst. The XRD, IR, XPS characterizations reveal that the Keggin structure of the CPMV was unaffected by carbon deposition. Moreover, it was shown that the supported CPMVs over the MgO surface can be beneficial to eliminate the coke. The temperature programmed oxidation (TPO) study showed that coke was formed over the catalyst on two different sites: (1) deposited on the CPMVs which can be burn off at a low temperature; (2) deposited on the MgO which could only be removed at higher temperature. The coke content reached constant with the reaction time increasing.
Resumo:
The structure and stability of magnesia-supported copper salts of molybdovanadophosphoric acid (Cu2PMo11VO40) were characterized by different techniques. The catalyst was prepared in ethanol by impregnation because this solvent does not hurt texture of the water-sensitive MgO and Cu2PMo11VO40. The Keggin-type structure compound may be degraded partially to form oligomerized polyoxometalate when supported on MgO. However, the oligomers can rebuild as the Keggin structure again after thermal treatment in air or during the reaction. Meanwhile, the V atoms migrate out of the Keggin structure to form a lacunary structure, as observed by Fourier transform IR spectroscopy. Moreover, the presence of Cu2+ as a countercation showed an affirmative influence on the migration of V atoms, and the active sites derived from the lacunary species generated after release of V from the Keggin anion. The electron paramagnetic resonance data imply that V5+ autoreduces to V4+ in the fresh catalyst, and during the catalytic reaction a large number of V4+ ions are produced, which enhance the formation of O2- vacancies around the metal atoms. These oxygen vacancies may also improve the reoxidation function of the catalyst. This behavior is correlated to higher catalytic properties of this catalyst. The oxidative dehydrogenation of hexanol to hexanal was studied over this catalyst.
Resumo:
Electrospray ionization (ESI) combined with multiple-stage tandem mass spectrometry (MSn) was used to directly analyze the glycolipid mixture from bacteria Bacillus pumilus without preliminary separation. Full scan ESI-MS revealed the composition of picomole quantities of glycerolglycolipid species containing C-14-C-19 fatty acids, some of which were monounsaturated, Two main components were identified from their molecular masses and fragmentation pathways. The fragmentation pathway of the known compound compared with the investigated compound verified the proposed structure as 1(3)-acyl-2-pentadecanoyl-3(1)-O-[beta-D-glucopyranosyl-(1-->6)-O-beta-D-glucopyranosyl]-sn-glycerols. A comparison of the multiple tandem mass spectra of the different alkali-metal cation adducts indicates that the intensity of fragments and the dissociation pathways are dependent on the alkali-metal type, The basic structures of glycerolglycolipids were reflected clearly from the fragmentation patterns of the sodium cations, The intense fragments of the sugar residue from the precursor ions were obtained from the lithiated adduct ions. ESI-MSn spectra of [M + K](+) ions did not provide as much fragmentation as [M + Na](+) and [M + Li](+) adducts, but their spectra allow the position of glycerol acylation to be determined. On the basis of MS2 spectra of[M + K](+) ions, it was established that all components have a C-15:0 fatty acid at the sn-2 position of the glycerol backbone and C-14-C-19 acids at the sn-1 position of the glycerol backbone. Copyright (C) 1999 John Wiley & Sons, Ltd.
Resumo:
Catalysts consisting of heteropoly acids (HPAs) supported on different silica and mesoporous molecular sieves have been prepared by impregnation and the sol-gel method, respectively, and their catalytic behavior in fixed-bed alkylation of isobutane with butene has been investigated. The activity, selectivity and stability of the supported-HPA catalysts could be correlated with the surface acidity of the catalysts, the structure of supports as well as the time on stream (TOS). In the fixed-bed reactor, the acidity of the heteropoly acid is favorable to the formation of dimerization products (C-8(=)); especially, the pore size of supports was seen to have an important effect on activity and product distribution of the catalysts. Contrary to the traditional solid-acid catalysts, the supported-HPA catalysts own an excellent stability for alkylation, which makes it possible for these supported catalysts to replace the liquid-acid catalysts used in industry.
Resumo:
In order to define the force of heteropoly acids on absorbed activated carbon surface, IR spectra of 12-silicotungstic acid (SiW12) and 12-tungstophosphoric acid (PW12) absorbed on activated carbon and in oxygen-containing organic compound solutions were studied. Based on the IR spectra and UV characteristics of the heteropoly acids in various chemical conditions, the chemical bonding between heteropoly acid and oxygen-containing gropus on the surface of activated carbon was suggested.
Resumo:
The surface chemical species of surface-modified activated carbons and adsorption of 12-silicotungstic acid (SiW12) on them were studied It was found that these carbons have different adsorption isotherms and adsorptive force. The carbonyl groups on the s
Resumo:
The biosynthesis of glycolipids in E. fasciculatus was studied by C-14 label and chase. The fatty acids in sulphoquinovosyl diacylglycerol (SQDG) were almost 16-carbon and 18-carbon ones. In addition to the two fatty acids, monogalactosyl diacylglycerol (MGDG) and digalactosyl diacylglycerol (DGDG) contained 8.5 mol% and 31.0 mol% of eicosapentaenoic acid (20 : 5), respectively, and this fatty acid was usually distributed in the sn-1 position of the glycerol backbone. When plants were incubated with [2-C-14] acetate, differences existed in the positional distribution of the labeled fatty acids in sn-1 and sn-2 among the three glycerolipids. In SQDG C-14-labeled fatty acids were distributed uniformly in the sn-1 and sn-2 positions. In DGDG, C-14-labeled fatty acids were mainly distributed in the sn-2 position. In MGDG, the radioactivity of fatty acids in sn-1 position was far greater than that in sn-2 position after a 30 min pulse label, and the difference in radioactivity between the two positions decreased rapidly. The above results indicated that differences in the positional distribution of C-14-labeled fatty acids between sn-1 and sn-2 positions might be related to 20 : 5 and the biosynthesis of DGDG. Our results also suggested that E. fasciculatus had the same DGDG biosynthetic pathway as that in higher plants and galactosyl transferase was selective for MGDC.
Resumo:
We collected the diseased blades of Laminaria japonica from Yantai Sea Farm from October to December 2002, and the alginic acid decomposing bacterium on the diseased blade was isolated and purified, and was identified as Alterornonas espejiana. This bacterium was applied as the causative pathogen to infect the blades of L. japonica under laboratory conditions. The aim of the present study was to identify the effects of the bacterium on the growth of L. japonica, and to find the possibly effective mechanism. Results showed that: (1) The blades of L. japonica exhibited symptoms of lesion, bleaching and deterioration when infected by the bacterium, and their growth and photosynthesis were dramatically suppressed. At the same time, the reactive oxygen species (ROS) generation enhanced obviously, and the relative membrane permeability increased significantly. The contents of malonaldehyde (MDA) and free fatty acid in the microsomol membrane greatly elevated, but the phospholipid content decreased. Result suggested an obvious peroxidation and deesterrification in the blades of L. japonica when infected by the bacterium. (2) The simultaneous assay on the antioxidant enzyme activities demonstrated that superoxide dismutase (SOD) and catalase (CAT) increased greatly when infected by the bacterium, but glutathione peroxidase (Gpx) and ascorbate peroxidase (APX) did not exhibit active responses to the bacterium throughout the experiment. (3) The histomorphological observations gave a distinctive evidence of the severity of the lesions as well as the relative abundance in the bacterial population on the blades after infection. The bacterium firstly invaded into the endodermis of L. japonica and gathered around there, and then resulted in the membrane damage, cells corruption and ultimately, the death of L. japonica.
Resumo:
The fatty acid compositions of 22 species of marine macrophytes, belonging to the Ceramiales, Cryptonemiales, Nemalionales, Laminariales, Chordariales, Scytosiphonales, Desmarestiales, Dictyosiphonales, Fucales, Dictyotales and Ulvales and collected from the Bohai Sea, were determined by capillary gas chromatography. The contents of polyunsaturated fatty acids (FAs) in the Bohai Sea algae, in comparison with the same species from the Yellow Sea were found to be lower. Red algae had relatively high levels of the acids 16:0, 18:1(n-7), 18:1(n-9), 20:5(n-3) and 20:4(n-6), and those examined were rich in C-20 PUFAs, these chiefly being arachidonic and eicosapentaenoic acids. The major FAs encountered in the Phaeophyta were 14:0, 16:0, 18:1(n-9), 18:2(n-6), 18:3(n-3), 18:4(n-3), 20:4(n-6) and 20:5(n-3). C18PUFAs are of greater abundance in the brown algae than in the red algae examined. All three green algae from the Ulvales had similar fatty acid patterns with major components, 16:0, 16:4(n-3), 18:1(n-7), 18:2(n-6), 18:3(n-3), and 18:4(n-3). They contained 16:3(n-3) and more 16:4(n-3), were rich in C18PUFAs, chiefly 18:3(n-3) and 18:4(n-3) and had 18:1(n-7)/18:1 (n-9) ratios higher than 1. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The seed oil from Nitraria tangutorum samples was obtained by supercritical carbon dioxide extraction methods. The extraction parameters for this methodology, including pressure, temperature, particle size and extraction time, were optimized. The free fatty acids in the seed oil were separated with a pre-column derivation method and 1,2-benzo-3,4-dihydrocarbazole-9-ethyl-p-toluenesulfonate (BDETS) as a labeling regent, followed by high-performance liquid chromatography (HPLC) with fluorescence detection. The target compounds were identified by mass spectrometry with atmospheric pressure chemical ionization (APCI in positive-ion mode). HPLC analysis shows that the main compositions of the seed oil samples were free fatty acids (FFAs) in high to low concentrations as follows: linoleic acid, oleic acid, hexadecanoic acid and octadecanoic acid. The assay detection limits (at signal-to-noise of 3:1) were 3.378-6.572 nmol/L. Excellent linear responses were observed, with correlation coefficients greater than 0.999. The facile BDETS derivatization coupled with mass spectrometry detection allowed the development of a highly sensitive method for analyzing free fatty acids in seed oil by supercritical CO2 extraction. The established method is highly efficient for seed oil extraction and extremely sensitive for fatty acid profile determination. (C) 2007 Elsevier B.V. All rights reserved.