868 resultados para decomposition of a support
Resumo:
A first comprehensive investigation on the deflagration of ammonium perchlorate (AP) in the subcritical regime, below the low pressure deflagration limit (LPL, 2.03 MPa) christened as regime I$^{\prime}$, is discussed by using an elegant thermodynamic approach. In this regime, deflagration was effected by augmenting the initial temperature (T$_{0}$) of the AP strand and by adding fuels like aliphatic dicarboxylic acids or polymers like carboxy terminated polybutadiene (CTPB). From this thermodynamic model, considering the dependence of burning rate ($\dot{r}$) on pressure (P) and T$_{0}$, the true condensed (E$_{\text{s,c}}$) and gas phase (E$_{\text{s,g}}$) activation energies, just below and above the surface respectively, have been obtained and the data clearly distinguishes the deflagration mechanisms in regime I$^{\prime}$ and I (2.03-6.08 MPa). Substantial reduction in the E$_{\text{s,c}}$ of regime I$^{\prime}$, compared to that of regime I, is attributed to HClO$_{4}$ catalysed decomposition of AP. HClO$_{4}$ formation, which occurs only in regime I$^{\prime}$, promotes dent formation on the surface as revealed by the reflectance photomicrographs, in contrast to the smooth surface in regime I. The HClO$_{4}$ vapours, in regime I$^{\prime}$, also catalyse the gas phase reactions and thus bring down the E$_{\text{s,g}}$ too. The excess heat transferred on to the surface from the gas phase is used to melt AP and hence E$_{\text{s,c}}$, in regime I, corresponds to the melt AP decomposition. It is consistent with the similar variation observed for both the melt layer thickness and $\dot{r}$ as a function of P. Thermochemical calculations of the surface heat release support the thermodynamic model and reveal that the AP sublimation reduces the required critical exothermicity of 1108.8 kJ kg$^{-1}$ at the surface. It accounts for the AP not sustaining combustion in the subcritical regime I$^{\prime}$. Further support for the model comes from the temperature-time profiles of the combustion train of AP. The gas and condensed phase enthalpies, derived from the profile, give excellent agreement with those computed thermochemically. The $\sigma _{\text{p}}$ expressions derived from this model establish the mechanistic distinction of regime I$^{\prime}$ and I and thus lend support to the thermodynamic model. On comparing the deflagration of strand against powder AP, the proposed thermodynamic model correctly predicts that the total enthalpy of the condensed and gas phases remains unaltered. However, 16% of AP particles undergo buoyant lifting into the gas phase in the `free board region' (FBR) and this renders the demarcation of the true surface difficult. It is found that T$_{\text{s}}$ lies in the FBR and due to this, in regime I$^{\prime}$, the E$_{\text{s,c}}$ of powder AP matches with the E$_{\text{s,g}}$ of the pellet. The model was extended to AP/dicarboxylic acids and AP/CTPB mixture. The condensed ($\Delta $H$_{1}$) and gas phase ($\Delta $H$_{2}$) enthalpies were obtained from the temperature profile analyses which fit well with those computed thermochemically. The $\Delta $H$_{1}$ of the AP/succinic acid mixture was found just at the threshold of sustaining combustion. Indeed the lower homologue malonic acid, as predicted, does not sustain combustion. In vaporizable fuels like sebacic acid the E$_{\text{s,c}}$ in regime I$^{\prime}$, understandably, conforms to the AP decomposition. However, the E$_{\text{s,c}}$ in AP/CTPB system corresponds to the softening of the polymer which covers AP particles to promote extensive condensed phase reactions. The proposed thermodynamic model also satisfactorily explains certain unique features like intermittent, plateau and flameless combustion in AP/ polymeric fuel systems.
Resumo:
Supported catalysts containing 15 wt.% of molybdenum have been prepared by the incipient wetness impregnation method. CaO, MgO, Al2O3, Zr(OH)4 and Al(OH)3 have been used as supports for the preparation of supported Mo catalysts. Characterisation of all the materials prepared has been carried out through BET surface area measurement, X-ray diffractometry and FT-IR spectroscopy. Catalytic activity measurements have been carried out with reference to structure-sensitive benzyl alcohol conversion in the liquid phase. The percentage conversion of benzyl alcohol to benzaldehyde and toluene varied over a large range depending on the support used for the preparation of catalysts, indicating the importance of the support on catalytic activity of Mo catalysts. Al(OH)3 has been found to be the best support for molybdenum among all the supports used. Support–metal interaction (SMI) has been found to play an important role in determining the catalytic activity of supported catalysts.
Resumo:
A new representation of spatio-temporal random processes is proposed in this work. In practical applications, such processes are used to model velocity fields, temperature distributions, response of vibrating systems, to name a few. Finding an efficient representation for any random process leads to encapsulation of information which makes it more convenient for a practical implementations, for instance, in a computational mechanics problem. For a single-parameter process such as spatial or temporal process, the eigenvalue decomposition of the covariance matrix leads to the well-known Karhunen-Loeve (KL) decomposition. However, for multiparameter processes such as a spatio-temporal process, the covariance function itself can be defined in multiple ways. Here the process is assumed to be measured at a finite set of spatial locations and a finite number of time instants. Then the spatial covariance matrix at different time instants are considered to define the covariance of the process. This set of square, symmetric, positive semi-definite matrices is then represented as a third-order tensor. A suitable decomposition of this tensor can identify the dominant components of the process, and these components are then used to define a closed-form representation of the process. The procedure is analogous to the KL decomposition for a single-parameter process, however, the decompositions and interpretations vary significantly. The tensor decompositions are successfully applied on (i) a heat conduction problem, (ii) a vibration problem, and (iii) a covariance function taken from the literature that was fitted to model a measured wind velocity data. It is observed that the proposed representation provides an efficient approximation to some processes. Furthermore, a comparison with KL decomposition showed that the proposed method is computationally cheaper than the KL, both in terms of computer memory and execution time.
Resumo:
33 p.
Resumo:
The aim of this research is to study the impact of religious coping, social support and subjective severity on Posttraumatic Growth (PTG) in people who lost their homes after the earthquake in Chile in 2010 and who now live in transitional shelters. One hundred sixteen adult men and women were evaluated using a subjective severity scale, the Posttraumatic Growth Inventory (PTGI), the Multidimensional Scale of Perceived Social Support (MSPSS) scale of social support and the Brief RCOPE scale of religious coping. The multiple linear regression analysis shows that social support and positive religious coping have an impact on PTG. On using a bootstrap estimate, it was found that positive religious coping fully mediates the relationship between subjective severity and PTG.
Resumo:
This paper describes a method for monitoring the variation in support condition of pipelines using a vibration technique. The method is useful for detecting poor support of buried pipelines and for detecting spanning and depth of cover in sub-sea lines. Variation in the pipe support condition leads to increased likelihood of pipe damage. Under roadways, poorly supported pipe may be damaged by vehicle loading. At sea, spanned sections of pipe are vulnerable to ocean current loading and also to snagging by stray anchors in shallow waters. A vibrating `pig' has been developed and tested on buried pipelines. Certain features of pipe support, such as voids and hard spots, display characteristic responses to vibration, and these are measured by the vibrating pig. Post-processing of the measured vibration data is used to produce a graphical representation of the pipeline support and certain `feature characteristics' are identified. In field tests on a pipeline with deliberately constructed support faults, features detected by the vibrating pig are in good agreement with the known construction.
Resumo:
The decomposition of experimental data into dynamic modes using a data-based algorithm is applied to Schlieren snapshots of a helium jet and to time-resolved PIV-measurements of an unforced and harmonically forced jet. The algorithm relies on the reconstruction of a low-dimensional inter-snapshot map from the available flow field data. The spectral decomposition of this map results in an eigenvalue and eigenvector representation (referred to as dynamic modes) of the underlying fluid behavior contained in the processed flow fields. This dynamic mode decomposition allows the breakdown of a fluid process into dynamically revelant and coherent structures and thus aids in the characterization and quantification of physical mechanisms in fluid flow. © 2010 Springer-Verlag.
Resumo:
The aquaculture sector has been playing an increasingly dominating role in Indian fisheries scenario since the last two and half decades. Introduction of induced breeding and composite fish culture (CFC) technologies has changed the freshwater aquaculture sector in India. Institutional support has been one of the most crucial aspects in all fisheries development programs, more so in the Indian context where most of fish farmers are socially and economically weak. The innovation of CFC technology in freshwater aquaculture sector in the early seventies generated the need for adequate and effective institutional support to farmers. Under the freshwater aquaculture development program, the Fish Farmers Development Agencies (FFDA) have been established at district level to provide technical and extension support to the farming community besides arranging ponds on lease and supply of seeds. In addition to above, FFDAs are also expected to arrange loans from banks and provide subsidies. Thus, FFDAs are meant to provide institutional support to fish farming community in the country. In view of the above, an effort was made to study the adequacy and effectiveness of institutional support provided by the FFDA, Mirzapur for the development of aquaculture in Mirzapur district of Uttar Pradesh {U.P.), India. Study reveals that leasing of ponds for fish farming has been favourable to economically weaker sections of societies while bank loan accessibility is more for those having relatively higher economic status. Though the FFDA, Mirzapur performed well in providing training to potential fish farmers and creating awareness about fish farming, its effectiveness could not be equally seen in seed supply.
Resumo:
We found a novel morphology variation of carbon deposition derived from CH4 decomposition over NI-based catalysts. By altering the chemical composition and particle size of Ni-based catalysts, carbon filaments, nanofibres and nanotubes were observed over conventional Ni/y-Al2O3, Ni-Co/gamma-Al2O3 and nanoscale Ni-Co/gamma-Al2O3 catalysts, respectively. The simple introduction of Co into a conventional Ni/gamma-Al2O3 catalyst can vary the carbon deposition from amorphous filamentous carbon to ordered carbon fibres. Moreover, carbon nanotubes with uniform diameter distribution can be obtained over nanosized Ni-Co/gamma-Al2O3 catalyst particles. In addition, the oxidation behaviour of the different deposited carbon was studied by using a temperature-programmed oxidation technique. This work provides a simple strategy to control over the size and morphology of the carbon deposition from catalytic decomposition of CH4.
Resumo:
The selective hydrogenation of cinnamaldehyde (CAL) was investigated using rice husk-based porous carbon (RHCs) supported platinum catalysts in supercritical carbon dioxide (SCCO2). The effects of surface chemistry treatment of the support and the reaction phase behavior have been examined. The Pt/H-RHCs (HNO3-pretreated) was more active for CAL hydrogenation compared with Pt/NH3 - RHCs (NH3 center dot H2O-pretreated). The Pt/RHCs catalyst exhibited a higher selectivity to cinnamyl alcohol (COL) compared with commercial catalyst of Pt/C, which is relative to the micro - mesoporosity structure of the RHCs.
Resumo:
Two systems of mixed oxides, La2-xSrxCuO4 +/- lambda (0.0 less than or equal to x less than or equal to 1.0) and La(2-x)Tn(x)CuO(4 +/-) (lambda) (0.0 less than or equal to x less than or equal to 0.4), with K2NiF4 structure were prepared. The average valence of Cu ions and oxygen nonstoichiometry (lambda) were determined by means of chemical analysis. Meanwhile, the adsorption and activation of nitrogen monoxide (NO) and the mixture of NO + CO over the mixed oxide catalysts were studied by means of mass spectrometry temperature-programmed desorption (MS-TPD). The catalytic behaviors in the reactions of direct decomposition of NO and its reduction by CO were investigated, and were discussed in relation with average valence of Cu ions, A and the activation and adsorption of reactant molecules. It has been proposed that both reactions proceed by the redox mechanism, in which the oxygen vacancies and the lower-valent Cu ions play important roles in the individual step of the redox cycle. Oxygen vacancy is more significant for NO decomposition than for NO + CO reaction. For the NO + CO reaction, the stronger implication of the lower-valent Cu ions or oxygen vacancy depends on reaction temperature and the catalytic systems (Sr- or Th-substituted). (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
A series of LnSrNiO(4)(A(2)BO(4), Ln = La, Pr, Nd, Sm, Gd) mixed oxides with K2NiF4 structure, in which A-site(Sr) was partly substituted by individual light rare earth element, was prepared. The solid state physico-chemical properties including crystal structure, defect structure, IR spectrum, valence state of H-site ion, nonstoichiometric oxygen, oxygenous species, the properties of oxidation and reduction etc. as well as the catalytic behavior for NO decomposition on these mixed oxides were investigated. The results show that all of these mixed oxide catalysts have high activity for the direct decomposition of NO(at 900 degrees C the conversion of NO is more than 90%). The effect of the substitution of light rare earth elements at A-site on catalytic behavior for NO decomposition was elucidated.
Resumo:
Rare earth complexes with phenylacetic acid (LnL(3) . nH(2)O, Ln is Ce, Nd, Pr, Ho, Er, Yb and Y, L is phenylacetate, n = 1-2) were prepared and characterized by elemental analysis, IR spectroscopy, chemical analysis, and X-ray crystal structure. The mechanism of thermal decomposition of the complexes was studied by means of TG-DTG, DTA and DSC. The activation energy and enthalpy change for the dehydration and melting processes were determined.
Resumo:
The thermal decomposition of polyaniline(PAn) and poly-o-toluidine(POT) was studied by means of direct pyrolysis mass spectrometry(DM) and MS/MS, The results showed that both benzene-diamine and quinone-diimine units were produced, and the intensities of fragments corresponding to quinone-diimine units increased as the oxidation degrees increased, The mechanism of thermal decomposition of PAn and POT was given for the first time.
Resumo:
The properties and formation of nanotubes have been extensively studied, but very few deal with the catalytic production mechanism of nanotubes. Two different techniques, thermogravimetric analysis and UV-Raman, have been applied to analyse the carbon deposition by catalysed decomposition of acetylene over an iron-based catalyst. The nature of the produced carbon materials depends on reaction temperature. Also, TEM allows identification of carbon nanotubes, encapsulated particles, and other nanostructures, while UV-Raman confirms its graphitic and graphite-like nature. (C) 2000 Elsevier Science Ltd. All rights reserved.