997 resultados para death investigation
Resumo:
Other Audit Reports - Special Investigation
Resumo:
Other Audit Reports - Special Investigation
Resumo:
Long-range Terrestrial Laser Scanning (TLS) is widely used in studies on rock slope instabilities. TLS point clouds allow the creation of high-resolution digital elevation models for detailed mapping of landslide morphologies and the measurement of the orientation of main discontinuities. Multi-temporal TLS datasets enable the quantification of slope displacements and rockfall volumes. We present three case studies using TLS for the investigation and monitoring of rock slope instabilities in Norway: 1) the analysis of 3D displacement of the Oksfjellet rock slope failure (Troms, northern Norway); 2) the detection and quantification of rockfalls along the sliding surfaces and at the front of the Kvitfjellet rock slope instability (Møre og Romsdal, western Norway); 3) the analysis of discontinuities and rotational movements of an unstable block at Stampa (Sogn og Fjordane, western Norway). These case studies highlight the possibilities but also limitations of TLS in investigating and monitoring unstable rock slopes.
Resumo:
This project explores the user costs and benefits of winter road closures. Severe winter weather makes travel unsafe and dramatically increases crash rates. When conditions become unsafe due to winter weather, road closures should allow users to avoid crash costs and eliminate costs associated with rescuing stranded motorists. Therefore, the benefits of road closures are the avoided safety costs. The costs of road closures are the delays that are imposed on motorists and motor carriers who would have made the trip had the road not been closed. This project investigated the costs and benefits of road closures and found that evaluating the benefits and costs is not as simple as it appears. To better understand the costs and benefits of road closures, the project investigates the literature, conducts interviews with shippers and motor carriers, and conducts case studies of road closures to determine what actually occurred on roadways during closures. The project also estimates a statistical model that relates weather severity to crash rates. Although, the statistical model is intended to illustrate the possibility to quantitatively relate measurable and predictable weather conditions to the safety performance of a roadway. In the future, weather conditions such as snow fall intensity, visibility, etc., can be used to make objective measures of the safety performance of a roadway rather than relying on subjective evaluations of field staff. The review of the literature and the interviews clearly illustrate that not all delays (increased travel time) are valued the same. Expected delays (routine delays) are valued at the generalized costs (value of the driver’s time, fuel, insurance, wear and tear on the vehicle, etc.), but unexpected delays are valued much higher because they result in interruption of synchronous activities at the trip’s destination. To reduce the costs of delays resulting from road closures, public agencies should communicate as early as possible the likelihood of a road closure.
Resumo:
County Audit Report - Special Investigation Letter
Investigation into Improved Pavement Curing Materials and Techniques: Part 2 - Phase III, March 2003
Resumo:
Appropriate curing is important for concrete to obtain the designed properties. This research was conducted to evaluate the curing effects of different curing materials and methods on pavement properties. At present the sprayed curing compound is a common used method for pavement and other concrete structure construction. Three curing compounds were selected for testing. Two different application rates were employed for the white-pigmented liquid curing compounds. The concrete properties of temperature, moisture content, conductivity, and permeability were examined at several test locations. It was found, in this project, that the concrete properties varied with the depth. Of the tests conducted (maturity, sorptivity, permeability, and conductivity), conductivity appears to be the best method to evaluate the curing effects in the field and bears potential for field application. The results indicated that currently approved curing materials in Iowa, when spread uniformly in a single or double application, provide adequate curing protection and meet the goals of the Iowa Department of Transportation. Experimental curing methods can be compared to this method through the use of conductivity testing to determine their application in the field.
Resumo:
A long-standing controversy is whether autophagy is a bona fide cause of mammalian cell death. We used a cell-penetrating autophagy-inducing peptide, Tat-Beclin 1, derived from the autophagy protein Beclin 1, to investigate whether high levels of autophagy result in cell death by autophagy. Here we show that Tat-Beclin 1 induces dose-dependent death that is blocked by pharmacological or genetic inhibition of autophagy, but not of apoptosis or necroptosis. This death, termed "autosis," has unique morphological features, including increased autophagosomes/autolysosomes and nuclear convolution at early stages, and focal swelling of the perinuclear space at late stages. We also observed autotic death in cells during stress conditions, including in a subpopulation of nutrient-starved cells in vitro and in hippocampal neurons of neonatal rats subjected to cerebral hypoxia-ischemia in vivo. A chemical screen of ~5,000 known bioactive compounds revealed that cardiac glycosides, antagonists of Na(+),K(+)-ATPase, inhibit autotic cell death in vitro and in vivo. Furthermore, genetic knockdown of the Na(+),K(+)-ATPase α1 subunit blocks peptide and starvation-induced autosis in vitro. Thus, we have identified a unique form of autophagy-dependent cell death, a Food and Drug Administration-approved class of compounds that inhibit such death, and a crucial role for Na(+),K(+)-ATPase in its regulation. These findings have implications for understanding how cells die during certain stress conditions and how such cell death might be prevented.
Resumo:
Cell death is achieved by two fundamentally different mechanisms: apoptosis and necrosis. Apoptosis is dependent on caspase activation, whereas the caspase-independent necrotic signaling pathway remains largely uncharacterized. We show here that Fas kills activated primary T cells efficiently in the absence of active caspases, which results in necrotic morphological changes and late mitochondrial damage but no cytochrome c release. This Fas ligand-induced caspase-independent death is absent in T cells that are deficient in either Fas-associated death domain (FADD) or receptor-interacting protein (RIP). RIP is also required for necrotic death induced by tumor necrosis factor (TNF) and TNF-related apoptosis-inducing ligand (TRAIL). In contrast to its role in nuclear factor kappa B activation, RIP requires its own kinase activity for death signaling. Thus, Fas, TRAIL and TNF receptors can initiate cell death by two alternative pathways, one relying on caspase-8 and the other dependent on the kinase RIP.
Resumo:
Other Audit Reports - Special Investigation
Resumo:
There is currently no approved neuroprotective pharmacotherapy for acute conditions such as stroke and cerebral asphyxia. One of the reasons for this may be the multiplicity of cell death mechanisms, because inhibition of a particular mechanism leaves the brain vulnerable to alternative ones. It is therefore essential to understand the different cell death mechanisms and their interactions. We here review the multiple signaling pathways underlying each of the three main morphological types of cell death - apoptosis, autophagic cell death and necrosis - emphasizing their importance in the neuronal death that occurs during cerebral ischemia and hypoxia-ischemia, and we analyze the interactions between the different mechanisms. Finally, we discuss the implications of the multiplicity of cell death mechanisms for the design of neuroprotective strategies.
Resumo:
Other Audit Reports - Special Investigation
Resumo:
Other Audit Reports - Special Investigation
Resumo:
Other Audit Reports - Special Investigation
Resumo:
Pavement settlement occurring in and around utility cuts is a common problem, resulting in uneven pavement surfaces, annoyance to drivers, and ultimately, further maintenance. A survey of municipal authorities and field and laboratory investigations were conducted to identify the factors contributing to the settlement of utility cut restorations in pavement sections. Survey responses were received from seven cities across Iowa and indicate that utility cut restorations often last less than two years. Observations made during site inspections showed that backfill material varies from one city to another, backfill lift thickness often exceeds 12 inches, and the backfill material is often placed at bulking moisture contents with no Quality control/Quality Assurance. Laboratory investigation of the backfill materials indicate that at the field moisture contents encountered, the backfill materials have collapse potentials up to 35%. Falling Weight Deflectometer (FWD) deflection data and elevation shots indicate that the maximum deflection in the pavement occurs in the area around the utility cut restoration. The FWD data indicate a zone of influence around the perimeter of the restoration extending two to three feet beyond the trench perimeter. The research team proposes moisture control, the use of 65% relative density in a granular fill, and removing and compacting the native material near the ground surface around the trench. Test sections with geogrid reinforcement were also incorporated. The performance of inspected and proposed utility cuts needs to be monitored for at least two more years.