885 resultados para customized treadmill
Resumo:
We propose a novel methodology to generate realistic network flow traces to enable systematic evaluation of network monitoring systems in various traffic conditions. Our technique uses a graph-based approach to model the communication structure observed in real-world traces and to extract traffic templates. By combining extracted and user-defined traffic templates, realistic network flow traces that comprise normal traffic and customized conditions are generated in a scalable manner. A proof-of-concept implementation demonstrates the utility and simplicity of our method to produce a variety of evaluation scenarios. We show that the extraction of templates from real-world traffic leads to a manageable number of templates that still enable accurate re-creation of the original communication properties on the network flow level.
Resumo:
Aim of the study was to determine distribution and depletion patterns of intramyocellular lipids (IMCL) in leg muscles before and after two types of standardized endurance exercise. ¹H-magnetic resonance spectroscopic imaging was performed (1) in the thigh of eight-trained cyclists after exercising on an ergometer for 3 h at 52 ± 8% of maximal speed and (2) in the lower leg of eight-trained runners after exercising on a treadmill for 3 h at 49 ± 3% of maximal workload. Pre-exercise IMCL contents were reduced postexercise in 11 out of 13 investigated upper and lower leg muscles (P < 0.015 for all). A strong linear correlation with a slope of ∼0.5 between pre-exercise IMCL content and IMCL depletion was found. IMCL depletion differed strongly between muscles. Absolute and also relative IMCL reduction was significantly higher in muscles with predominantly slow fibers compared to those with fast fibers. Creatine levels and fiber orientation were stable and unchanged after exercise, while trimethyl-ammonium groups increased. This is presented in the accompanying paper. In conclusion, a systematic comparison of metabolic changes in cross sections of the upper and lower leg was performed. The results imply that pre-exercise IMCL levels determine the degree of IMCL depletion after exercise.
Resumo:
In implant dentistry, there is a need for synthetic bone substitute blocks to support ridge augmentation in situations where large bone volumes are missing. Polycaprolactone-based scaffolds demonstrated excellent results in bone tissue engineering applications. The use of customized polycaprolactone-tricalcium phosphate (PCL-TCP) displayed promising results from recent rat femur and rabbit calvaria studies. However, data from clinically representative models in larger animals do not exist.
Resumo:
OBJECTIVES: To test the survival rates, and the technical and biological complication rates of customized zirconia and titanium abutments 5 years after crown insertion. MATERIAL AND METHODS: Twenty-two patients with 40 single implants in maxillary and mandibular canine and posterior regions were included. The implant sites were randomly assigned to zirconia abutments supporting all-ceramic crowns or titanium abutments supporting metal-ceramic crowns. Clinical examinations were performed at baseline, and at 6, 12, 36 and 60 months of follow-up. The abutments and reconstructions were examined for technical and/or biological complications. Probing pocket depth (PPD), plaque control record (PCR) and Bleeding on Probing (BOP) were assessed at abutments (test) and analogous contralateral teeth (control). Radiographs of the implants revealed the bone level (BL) on mesial (mBL) and distal sides (dBL). Data were statistically analyzed with nonparametric mixed models provided by Brunner and Langer and STATA (P < 0.05). RESULTS: Eighteen patients with 18 zirconia and 10 titanium abutments were available at a mean follow-up of 5.6 years (range 4.5-6.3 years). No abutment fracture or loss of a reconstruction occurred. Hence, the survival rate was 100% for both. Survival of implants supporting zirconia abutments was 88.9% and 90% for implants supporting titanium abutments. Chipping of the veneering ceramic occurred at three metal-ceramic crowns supported by titanium abutments. No significant differences were found at the zirconia and titanium abutments for PPD (meanPPD(ZrO2) 3.3 ± 0.6 mm, mPPD(T) (i) 3.6 ± 1.1 mm), PCR (mPCR(Z) (rO) (2) 0.1 ± 0.3, mPCR(T) (i) 0.3 ± 0.2) and BOP (mBOP(Z) (rO) (2) 0.5 ± 0.3, mBOP(T) (i) 0.6 ± 0.3). Moreover, the BL was similar at implants supporting zirconia and titanium abutments (mBL(Z) (rO) (2) 1.8 ± 0.5, dBL(Z) (rO) (2) 2.0 ± 0.8; mBL(T) (i) 2.0 ± 0.8, dBL(T) (i) 1.9 ± 0.8). CONCLUSIONS: There were no statistically or clinically relevant differences between the 5-year survival rates, and the technical and biological complication rates of zirconia and titanium abutments in posterior regions.
Resumo:
Arts experts are commonly skeptical of applying scientific methods to aesthetic experiencing, which remains a field of study predominantly for the humanities. Laboratory research has however indicated that artworks may elicit emotional and physiological responses. Yet, this line of aesthetics research has previously suffered from insufficient external validity. We therefore conducted a study in which aesthetic perception was monitored in a fine-art museum, unrestricting to the viewers’ freedom of aesthetic choice. Visitors were invited to wear electronic gloves through which their locomotion, heart rate and skin conductance were continuously recorded. Emotional and aesthetic responses to selected works of an exhibition were assessed using a customized questionnaire. In a sample of 373 adult participants, we found that physiological responses during perception of an artwork were significantly related to aesthetic-emotional experiencing. The dimensions ‘Aesthetic Quality’, ‘Surprise/Humor’, ‘Dominance’ and ‘Curatorial Quality’ were associated with cardiac measures (heart rate variability, heart rate level) and skin conductance variability. This is first evidence that aesthetics can be statistically grounded in viewers’ physiology in an ecologically valid environment, the art gallery, enhancing our understanding of the effects of artworks and their curatorial staging.
Resumo:
This study investigates whether adaptations of mitochondrial function accompany the improvement of endurance performance capacity observed in well-trained athletes after an intermittent hypoxic training program. Fifteen endurance-trained athletes performed two weekly training sessions on treadmill at the velocity associated with the second ventilatory threshold (VT2) with inspired O2 fraction = 14.5% [hypoxic group (Hyp), n = 8] or with inspired O2 fraction = 21% [normoxic group (Nor), n = 7], integrated into their usual training, for 6 wk. Before and after training, oxygen uptake (VO2) and speed at VT2, maximal VO2 (VO2 max), and time to exhaustion at velocity of VO2 max (minimal speed associated with VO2 max) were measured, and muscle biopsies of vastus lateralis were harvested. Muscle oxidative capacities and sensitivity of mitochondrial respiration to ADP (Km) were evaluated on permeabilized muscle fibers. Time to exhaustion, VO2 at VT2, and VO2 max were significantly improved in Hyp (+42, +8, and +5%, respectively) but not in Nor. No increase in muscle oxidative capacity was obtained with either training protocol. However, mitochondrial regulation shifted to a more oxidative profile in Hyp only as shown by the increased Km for ADP (Nor: before 476 +/- 63, after 524 +/- 62 microM, not significant; Hyp: before 441 +/- 59, after 694 +/- 51 microM, P < 0.05). Thus including hypoxia sessions into the usual training of athletes qualitatively ameliorates mitochondrial function by increasing the respiratory control by creatine, providing a tighter integration between ATP demand and supply.
Resumo:
BACKGROUND: Prostate cancer is the most common type of cancer in men, however, therapeutic options are limited. 50-90% of hormone-refractory prostate cancer cells show an overexpression of epidermal growth factor receptor (EGFR), which may contribute to uncontrolled proliferation and resistance to chemotherapy. In vitro, gefitinib, an orally administered tyrosine kinase inhibitor, has shown a significant increase in antitumor activity when combined with chemotherapy. PATIENTS AND METHODS: In this phase II study, the safety and efficacy of gefitinib in combination with docetaxel, a chemotherapeutic agent commonly used for prostate cancer, was investigated in patients with hormone-refractory prostate cancer (HRPC). 37 patients with HRPC were treated continuously with gefitinib 250 mg once daily and docetaxel 35 mg/m2 i.v. for up to 6 cycles. PSA response, defined as a =50% decrease in serum PSA compared with trial entry, was the primary efficacy parameter. PSA levels were measured at prescribed intervals. RESULTS: The response rate and duration of response were consistent with those seen with docetaxel monotherapy. The combination of docetaxel and gefitinib was reasonably well tolerated in this study. CONCLUSION: Future studies should investigate whether patients with specific tumor characteristics, e.g. EGFR protein overexpression, respond better to gefitinib than patients without, leading to a more customized therapy option.
Resumo:
The hypotheses that postexercise replenishment of intramyocellular lipids (IMCL) is enhanced by endurance training and that it depends on fat intake were tested. Trained and untrained subjects exercised on a treadmill for 2 h at 50% peak oxygen consumption, reducing IMCL by 26-22%. During recovery, they were fed 55% (high fat) or 15% (low fat) lipid energy diets. Muscle substrate stores were estimated by (1)H (IMCL)- and (13)C (glycogen)-magnetic resonance spectroscopy in tibialis anterior muscle before and after exercise. Resting IMCL content was 71% higher in trained than untrained subjects and correlated significantly with glycogen content. Both correlated positively with indexes of insulin sensitivity. After 30 h on the high-fat diet, IMCL concentration was 30-45% higher than preexercise, whereas it remained 5-17% lower on the low-fat diet. Training status had no significant influence on IMCL replenishment. Glycogen was restored within a day with both diets. We conclude that fat intake postexercise strongly promotes IMCL repletion independently of training status. Furthermore, replenishment of IMCL can be completed within a day when fat intake is sufficient.
Resumo:
Supervised exercise training has been shown to improve walking capacity in several studies of patients with intermittent claudication. However, data on long-term outcome are quite limited. The aim of this prospective study was to evaluate long-term effects of supervised exercise training on walking capacity and quality of life in patients with intermittent claudication. Patients and methods: Sixty-seven consecutive patients with intermittent claudication who completed a supervised 12-week exercise training program were asked for follow up evaluation 39 +/- 20 months after program completion. Pain-free walking distance (PWD) and maximum walking distances (MWD) were assessed by treadmill test and several questionnaires. Results: Forty (60%) patients agreed to participate, 22 (33%) refused participation, and 5 (7%) died during follow-up. PWD and MWD significantly improved at completion of 12-weeks supervised exercise training as compared to baseline (PWD 114 +/- 100 vs. 235 +/- 248, p = 0.002; MWD 297 +/- 273 vs. 474 +/- 359, p = 0.001). Improvement of PWD and MWD could be maintained at follow up (197 +/- 254, p = 0.014; 390 +/- 324, p = 0.035, respectively) with non-smokers showing significantly better sustained PWD and MWD improvement as compared to baseline. Overall, walking capacity correlated with functional status of quality of life. Conclusions: Major findings of this investigation were that improvement in walking capacity is sustained after completion of supervised exercise training program with best results in patients who quitted or never smoked. Improved walking capacity is associated with increased functional status of quality of life.
Resumo:
Autonomous system applications are typically limited by the power supply operational lifetime when battery replacement is difficult or costly. A trade-off between battery size and battery life is usually calculated to determine the device capability and lifespan. As a result, energy harvesting research has gained importance as society searches for alternative energy sources for power generation. For instance, energy harvesting has been a proven alternative for powering solar-based calculators and self-winding wristwatches. Thus, the use of energy harvesting technology can make it possible to assist or replace batteries for portable, wearable, or surgically-implantable autonomous systems. Applications such as cardiac pacemakers or electrical stimulation applications can benefit from this approach since the number of surgeries for battery replacement can be reduced or eliminated. Research on energy scavenging from body motion has been investigated to evaluate the feasibility of powering wearable or implantable systems. Energy from walking has been previously extracted using generators placed on shoes, backpacks, and knee braces while producing power levels ranging from milliwatts to watts. The research presented in this paper examines the available power from walking and running at several body locations. The ankle, knee, hip, chest, wrist, elbow, upper arm, side of the head, and back of the head were the chosen target localizations. Joints were preferred since they experience the most drastic acceleration changes. For this, a motor-driven treadmill test was performed on 11 healthy individuals at several walking (1-4 mph) and running (2-5 mph) speeds. The treadmill test provided the acceleration magnitudes from the listed body locations. Power can be estimated from the treadmill evaluation since it is proportional to the acceleration and frequency of occurrence. Available power output from walking was determined to be greater than 1mW/cm³ for most body locations while being over 10mW/cm³ at the foot and ankle locations. Available power from running was found to be almost 10 times higher than that from walking. Most energy harvester topologies use linear generator approaches that are well suited to fixed-frequency vibrations with sub-millimeter amplitude oscillations. In contrast, body motion is characterized with a wide frequency spectrum and larger amplitudes. A generator prototype based on self-winding wristwatches is deemed to be appropriate for harvesting body motion since it is not limited to operate at fixed-frequencies or restricted displacements. Electromagnetic generation is typically favored because of its slightly higher power output per unit volume. Then, a nonharmonic oscillating rotational energy scavenger prototype is proposed to harness body motion. The electromagnetic generator follows the approach from small wind turbine designs that overcome the lack of a gearbox by using a larger number of coil and magnets arrangements. The device presented here is composed of a rotor with multiple-pole permanent magnets having an eccentric weight and a stator composed of stacked planar coils. The rotor oscillations induce a voltage on the planar coil due to the eccentric mass unbalance produced by body motion. A meso-scale prototype device was then built and evaluated for energy generation. The meso-scale casing and rotor were constructed on PMMA with the help of a CNC mill machine. Commercially available discrete magnets were encased in a 25mm rotor. Commercial copper-coated polyimide film was employed to manufacture the planar coils using MEMS fabrication processes. Jewel bearings were used to finalize the arrangement. The prototypes were also tested at the listed body locations. A meso-scale generator with a 2-layer coil was capable to extract up to 234 µW of power at the ankle while walking at 3mph with a 2cm³ prototype for a power density of 117 µW/cm³. This dissertation presents the analysis of available power from walking and running at different speeds and the development of an unobtrusive miniature energy harvesting generator for body motion. Power generation indicates the possibility of powering devices by extracting energy from body motion.
Resumo:
Accurate seasonal to interannual streamflow forecasts based on climate information are critical for optimal management and operation of water resources systems. Considering most water supply systems are multipurpose, operating these systems to meet increasing demand under the growing stresses of climate variability and climate change, population and economic growth, and environmental concerns could be very challenging. This study was to investigate improvement in water resources systems management through the use of seasonal climate forecasts. Hydrological persistence (streamflow and precipitation) and large-scale recurrent oceanic-atmospheric patterns such as the El Niño/Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), the Atlantic Multidecadal Oscillation (AMO), the Pacific North American (PNA), and customized sea surface temperature (SST) indices were investigated for their potential to improve streamflow forecast accuracy and increase forecast lead-time in a river basin in central Texas. First, an ordinal polytomous logistic regression approach is proposed as a means of incorporating multiple predictor variables into a probabilistic forecast model. Forecast performance is assessed through a cross-validation procedure, using distributions-oriented metrics, and implications for decision making are discussed. Results indicate that, of the predictors evaluated, only hydrologic persistence and Pacific Ocean sea surface temperature patterns associated with ENSO and PDO provide forecasts which are statistically better than climatology. Secondly, a class of data mining techniques, known as tree-structured models, is investigated to address the nonlinear dynamics of climate teleconnections and screen promising probabilistic streamflow forecast models for river-reservoir systems. Results show that the tree-structured models can effectively capture the nonlinear features hidden in the data. Skill scores of probabilistic forecasts generated by both classification trees and logistic regression trees indicate that seasonal inflows throughout the system can be predicted with sufficient accuracy to improve water management, especially in the winter and spring seasons in central Texas. Lastly, a simplified two-stage stochastic economic-optimization model was proposed to investigate improvement in water use efficiency and the potential value of using seasonal forecasts, under the assumption of optimal decision making under uncertainty. Model results demonstrate that incorporating the probabilistic inflow forecasts into the optimization model can provide a significant improvement in seasonal water contract benefits over climatology, with lower average deficits (increased reliability) for a given average contract amount, or improved mean contract benefits for a given level of reliability compared to climatology. The results also illustrate the trade-off between the expected contract amount and reliability, i.e., larger contracts can be signed at greater risk.
Resumo:
Small clusters of gallium oxide, technologically important high temperature ceramic, together with interaction of nucleic acid bases with graphene and small-diameter carbon nanotube are focus of first principles calculations in this work. A high performance parallel computing platform is also developed to perform these calculations at Michigan Tech. First principles calculations are based on density functional theory employing either local density or gradient-corrected approximation together with plane wave and gaussian basis sets. The bulk Ga2O3 is known to be a very good candidate for fabricating electronic devices that operate at high temperatures. To explore the properties of Ga2O3 at nonoscale, we have performed a systematic theoretical study on the small polyatomic gallium oxide clusters. The calculated results find that all lowest energy isomers of GamOn clusters are dominated by the Ga-O bonds over the metal-metal or the oxygen-oxygen bonds. Analysis of atomic charges suggest the clusters to be highly ionic similar to the case of bulk Ga2O3. In the study of sequential oxidation of these slusters starting from Ga2O, it is found that the most stable isomers display up to four different backbones of constituent atoms. Furthermore, the predicted configuration of the ground state of Ga2O is recently confirmed by the experimental result of Neumark's group. Guided by the results of calculations the study of gallium oxide clusters, performance related challenge of computational simulations, of producing high performance computers/platforms, has been addressed. Several engineering aspects were thoroughly studied during the design, development and implementation of the high performance parallel computing platform, rama, at Michigan Tech. In an attempt to stay true to the principles of Beowulf revolutioni, the rama cluster was extensively customized to make it easy to understand, and use - for administrators as well as end-users. Following the results of benchmark calculations and to keep up with the complexity of systems under study, rama has been expanded to a total of sixty four processors. Interest in the non-covalent intereaction of DNA with carbon nanotubes has steadily increased during past several years. This hybrid system, at the junction of the biological regime and the nanomaterials world, possesses features which make it very attractive for a wide range of applicatioins. Using the in-house computational power available, we have studied details of the interaction between nucleic acid bases with graphene sheet as well as high-curvature small-diameter carbon nanotube. The calculated trend in the binding energies strongly suggests that the polarizability of the base molecules determines the interaction strength of the nucleic acid bases with graphene. When comparing the results obtained here for physisorption on the small diameter nanotube considered with those from the study on graphene, it is observed that the interaction strength of nucleic acid bases is smaller for the tube. Thus, these results show that the effect of introducing curvature is to reduce the binding energy. The binding energies for the two extreme cases of negligible curvature (i.e. flat graphene sheet) and of very high curvature (i.e. small diameter nanotube) may be considered as upper and lower bounds. This finding represents an important step towards a better understanding of experimentally observed sequence-dependent interaction of DNA with Carbon nanotubes.
Resumo:
During locomotion, turning is a common and recurring event which is largely neglected in the current state-of-the-art ankle-foot prostheses, forcing amputees to use different steering mechanisms for turning, compared to non-amputees. A better understanding of the complexities surrounding lower limb prostheses will lead to increased health and well-being of amputees. The aim of this research is to develop a steerable ankle-foot prosthesis that mimics the human ankle mechanical properties. Experiments were developed to estimate the mechanical impedance of the ankle and the ankles angles during straight walk and step turn. Next, this information was used in the design of a prototype, powered steerable ankle-foot prosthesis with two controllable degrees of freedom. One of the possible approaches in design of the prosthetic robots is to use the human joints’ parameters, especially their impedance. A series of experiments were conducted to estimate the stochastic mechanical impedance of the human ankle when muscles were fully relaxed and co-contracting antagonistically. A rehabilitation robot for the ankle, Anklebot, was employed to provide torque perturbations to the ankle. The experiments were performed in two different configurations, one with relaxed muscles, and one with 10% of maximum voluntary contraction (MVC). Surface electromyography (sEMG) was used to monitor muscle activation levels and these sEMG signals were displayed to subjects who attempted to maintain them constant. Time histories of ankle torques and angles in the lateral/medial (LM) directions, inversion-eversion (IE), and dorsiflexionplantarflexion (DP) were recorded. Linear time-invariant transfer functions between the measured torques and angles were estimated providing an estimate of ankle mechanical impedance. High coherence was observed over a frequency range up to 30 Hz. The main effect of muscle activation was to increase the magnitude of ankle mechanical impedance in all degrees of freedom of the ankle. Another experiment compared the three-dimensional angles of the ankle during step turn and straight walking. These angles were measured to be used for developing the control strategy of the ankle-foot prosthesis. An infrared camera system was used to track the trajectories and angles of the foot and leg. The combined phases of heel strike and loading response, mid stance, and terminal stance and pre-swing were determined and used to measure the average angles at each combined phase. The Range of motion (ROM) in IE increased during turning while ML rotation decreased and DP changed the least. During the turning step, ankle displacement in DP started with similar angles to straight walk and progressively showed less plantarflexion. In IE, the ankle showed increased inversion leaning the body toward the inside of the turn. ML rotation initiated with an increased medial rotation during the step turn relative to the straight walk transitioning to increased lateral rotation at the toe off. A prototype ankle-foot prosthesis capable of controlling both DP and IE using a cable driven mechanism was developed and assessed as part of a feasibility study. The design is capable of reproducing the angles required for straight walk and step turn; generates 712N of lifting force in plantarflexion, and shows passive stiffness comparable to a nonload bearing ankle impedance. To evaluate the performance of the ankle-foot prosthesis, a circular treadmill was developed to mimic human gait during steering. Preliminary results show that the device can appropriately simulate human gait with loading and unloading the ankle joint during the gait in circular paths.
Resumo:
Among daily computer users who are proficient, some are flexible at accomplishing unfamiliar tasks on their own and others have difficulty. Software designers and evaluators involved with Human Computer Interaction (HCI) should account for any group of proficient daily users that are shown to stumble over unfamiliar tasks. We define "Just Enough" (JE) users as proficient daily computer users with predominantly extrinsic motivation style who know just enough to get what they want or need from the computer. We hypothesize that JE users have difficulty with unfamiliar computer tasks and skill transfer, whereas intrinsically motivated daily users accomplish unfamiliar tasks readily. Intrinsic motivation can be characterized by interest, enjoyment, and choice and extrinsic motivation is externally regulated. In our study we identified users by motivation style and then did ethnographic observations. Our results confirm that JE users do have difficulty accomplishing unfamiliar tasks on their own but had fewer problems with near skill transfer. In contrast, intrinsically motivated users had no trouble with unfamiliar tasks nor with near skill transfer. This supports our assertion that JE users know enough to get routine tasks done and can transfer that knowledge, but become unproductive when faced with unfamiliar tasks. This study combines quantitative and qualitative methods. We identified 66 daily users by motivation style using an inventory adapted from Deci and Ryan (Ryan and Deci 2000) and from Guay, Vallerand, and Blanchard (Guay et al. 2000). We used qualitative ethnographic methods with a think aloud protocol to observe nine extrinsic users and seven intrinsic users. Observation sessions had three customized phases where the researcher directed the participant to: 1) confirm the participant's proficiency; 2) test the participant accomplishing unfamiliar tasks; and 3) test transfer of existing skills to unfamiliar software.
Resumo:
PURPOSE: Transcranial Doppler sonography (TCD) is an established method for assessing changes in blood flow velocity (BFV) coupled to brain activity. Our objective was to investigate whether walking induces measurable changes in BFV in healthy subjects. METHODS: Changes in BFV in both middle cerebral arteries (MCAs) of 40 healthy adult subjects during walking on a treadmill were measured using bilateral TCD. In 8 of the 40 subjects, 1 anterior cerebral artery (ACA) was monitored simultaneously with the contralateral MCA. The percentage increase in BFV (BFVI%) compared with the baseline velocity (V(0)), the percentage decrease in BFV (BFVD%) compared with the V(0), and the normalized ACA-MCA ratio were analyzed. RESULTS: The overall mean (+/- standard deviation [SD]) V(0) was 59.9 +/- 11.6 cm/second in the left MCA and 60.1 +/- 12.9 cm/second in the right MCA. Women had higher V(0) values than men had. Walking evoked an initial mean overall BFVI% in both left (8.4 +/- 5.1%) and right MCAs (9.1 +/- 5.1%), followed by a decrease to below baseline values in 38 of 40 subjects. A statistically significant increase of the normalized ACA-MCA ratio was measured, indicating that changes in BFV in the ACA territory were coupled to brain activation during walking. CONCLUSIONS: The use of functional TCD showed different changes in BFV in the ACAs and MCAs during walking. This method may be an interesting tool for monitoring progress in patients with motor deficits of the legs, such as paresis.