996 resultados para current sensing
Resumo:
PURPOSE OF REVIEW: Oculopalatal tremor (OPT) is an acquired disorder resulting from the interruption of a specific brainstem circuitry, the dentato-rubro-olivary pathway or Guillain-Mollaret triangle. The recent literature on OPT and olivary hypertrophy was reviewed with specific interest regarding causes, diagnostic procedures, physiopathology and therapies. RECENT FINDINGS: OPT is associated with inferior olivary hypertrophy, and recent findings have provided a better understanding of its intimate mechanisms. A dual-mechanism model, combining an oscillator (inferior olive) and a modulator/amplifier (cerebellum), best explains the development of OPT. Electrotonic coupling and specific Ca channels contribute to oscillations of inferior olivary nucleus neurons in OPT. Improvement of visual symptoms can be achieved with oral gabapentin or memantine. SUMMARY: Both the neuronal circuitry and the physiopathology of OPT are now better understood. This opens up an era of specific therapy for this rare cause of disabling oscillopsia.
Resumo:
BACKGROUND: As the long-term survival of pancreatic head malignancies remains dismal, efforts have been made for a better patient selection and a tailored treatment. Tumour size could also be used for patient stratification. METHODS: One hundred and fourteen patients underwent a pancreaticoduodenectomy for pancreatic adenocarcinoma, peri-ampullary and biliary cancer stratified according to: ≤20 mm, 21-34 mm, 35-45 mm and >45 mm tumour size. RESULTS: Patients with tumour sizes of ≤20 mm had a N1 rate of 41% and a R1/2 rate of 7%. The median survival was 3.4 years. N1 and R1/2 rates increased to 84% and 31% for tumour sizes of 21-34 mm (P = 0.0002 for N, P = 0.02 for R). The median survival decreased to 1.6 years (P = 0.0003). A further increase in tumour size of 35-45 mm revealed a further increase of N1 and R1/2 rates of 93% (P < 0.0001) and 33%, respectively. The median survival was 1.2 years (P = 0.004). Tumour sizes >45 mm were related to a further decreased median survival of 1.1 years (P = 0.2), whereas N1 and R1/2 rates were 87% and 20%, respectively. DISCUSSION: Tumour size is an important feature of pancreatic head malignancies. A tumour diameter of 20 mm seems to be the cut-off above which an increased rate of incomplete resections and metastatic lymph nodes must be encountered and the median survival is reduced.
Resumo:
The staphylococci are an ever-present threat in our world, capable of causing a wide range of infections, and are a persistent presence in the clinical environment. As the number of antimicrobial compounds effective against staphylococci decreases, because of the acquisition and spread of antibiotic resistance, there is a growing need for novel therapeutic molecules. Intra and inter-species communication (quorum sensing) is a biologically significant phenomenon that has been associated with virulence, intracellular survival, and biofilm formation. Quorum sensing molecules of staphylococci and other species (e.g. Pseudomonas aeruginosa) can inhibit virulence factor production and/or growth of staphylococci, leading to the possibility that interference with staphylococcal quorum-sensing systems could be a way of controlling the diverse infections caused by the staphylococci. In this article, we discuss the potential of quorum-sensing systems of staphylococci as therapeutic targets.
Resumo:
Two portable Radio Frequency IDentification (RFID) systems (made by Texas Instruments and HiTAG) were developed and tested for bridge scour monitoring by the Department of Civil and Environmental Engineering at the University of Iowa (UI). Both systems consist of three similar components: 1) a passive cylindrical transponder of 2.2 cm in length (derived from transmitter/responder); 2) a low frequency reader (~134.2 kHz frequency); and 3) an antenna (of rectangular or hexagonal loop). The Texas Instruments system can only read one smart particle per time, while the HiTAG system was successfully modified here at UI by adding the anti-collision feature. The HiTAG system was equipped with four antennas and could simultaneously detect 1,000s of smart particles located in a close proximity. A computer code was written in C++ at the UI for the HiTAG system to allow simultaneous, multiple readouts of smart particles under different flow conditions. The code is written for the Windows XP operational system which has a user-friendly windows interface that provides detailed information regarding the smart particle that includes: identification number, location (orientation in x,y,z), and the instance the particle was detected.. These systems were examined within the context of this innovative research in order to identify the best suited RFID system for performing autonomous bridge scour monitoring. A comprehensive laboratory study that included 142 experimental runs and limited field testing was performed to test the code and determine the performance of each system in terms of transponder orientation, transponder housing material, maximum antenna-transponder detection distance, minimum inter-particle distance and antenna sweep angle. The two RFID systems capabilities to predict scour depth were also examined using pier models. The findings can be summarized as follows: 1) The first system (Texas Instruments) read one smart particle per time, and its effective read range was about 3ft (~1m). The second system (HiTAG) had similar detection ranges but permitted the addition of an anti-collision system to facilitate the simultaneous identification of multiple smart particles (transponders placed into marbles). Therefore, it was sought that the HiTAG system, with the anti-collision feature (or a system with similar features), would be preferable when compared to a single-read-out system for bridge scour monitoring, as the former could provide repetitive readings at multiple locations, which could help in predicting the scour-hole bathymetry along with maximum scour depth. 2) The HiTAG system provided reliable measures of the scour depth (z-direction) and the locations of the smart particles on the x-y plane within a distance of about 3ft (~1m) from the 4 antennas. A Multiplexer HTM4-I allowed the simultaneous use of four antennas for the HiTAG system. The four Hexagonal Loop antennas permitted the complete identification of the smart particles in an x, y, z orthogonal system as function of time. The HiTAG system can be also used to measure the rate of sediment movement (in kg/s or tones/hr). 3) The maximum detection distance of the antenna did not change significantly for the buried particles compared to the particles tested in the air. Thus, the low frequency RFID systems (~134.2 kHz) are appropriate for monitoring bridge scour because their waves can penetrate water and sand bodies without significant loss of their signal strength. 4) The pier model experiments in a flume with first RFID system showed that the system was able to successfully predict the maximum scour depth when the system was used with a single particle in the vicinity of pier model where scour-hole was expected. The pier model experiments with the second RFID system, performed in a sandbox, showed that system was able to successfully predict the maximum scour depth when two scour balls were used in the vicinity of the pier model where scour-hole was developed. 5) The preliminary field experiments with the second RFID system, at the Raccoon River, IA near the Railroad Bridge (located upstream of 360th street Bridge, near Booneville), showed that the RFID technology is transferable to the field. A practical method would be developed for facilitating the placement of the smart particles within the river bed. This method needs to be straightforward for the Department of Transportation (DOT) and county road working crews so it can be easily implemented at different locations. 6) Since the inception of this project, further research showed that there is significant progress in RFID technology. This includes the availability of waterproof RFID systems with passive or active transponders of detection ranges up to 60 ft (~20 m) within the water–sediment column. These systems do have anti-collision and can facilitate up to 8 powerful antennas which can significantly increase the detection range. Such systems need to be further considered and modified for performing automatic bridge scour monitoring. The knowledge gained from the two systems, including the software, needs to be adapted to the new systems.
Resumo:
Chez les mammifères, les phéromones sont des molécules clés dans la régulation des comportements sociaux au sein d'une espèce. Chez la souris, la détection de ces molécules se fait dans l'organe voméronasal (VNO] et implique le canal TRPC2 afin de dépolariser les neurones. Des différences de comportement entre des souris Trpc2-/- et des souris sans VNO suggèrent l'implication d'une autre protéine effectrice dans la voie de signalisation des phéromones. L'hypothèse étant que cette protéine formerait un canal hétéromérique avec TRPC2. CNGA4 est une protéine sans fonction connue dans le VNO des rongeurs. Elle appartient à la famille des protéines CNG qui joue un rôle important dans différentes voies de signalisation comme la vision ou l'olfaction. Etant donné sa présence dans le VNO, son rôle inconnu dans cet organe et son rôle important dans de nombreuses voies de signalisation, nous avons décidé d'étudier CNGA4 afin de connaître sa localisation, ses propriétés ou encore sa structure. Nous avons découvert que CNGA4 est exprimée dans les axons, les neurones immatures ainsi que sur les microvillosités des neurones de VNO. A l'aide de souris portant une version non fonctionnelle de CNGA4, nous avons pu montrer que cette protéine joue un rôle majeur dans la voie de signalisation des phéromones. Ainsi, les neurones du VNO portant une version non fonctionnelle de CNGA4 répondent moins fréquemment aux phéromones et par conséquent les phéromones activent également moins de neurones dans le bulbe olfactif accessoire, premier relais du VNO avec le cortex. Cette détection défaillante se traduit par une absence d'agressivité des souris mutantes ainsi que par une incapacité de ces souris à discriminer le sexe de leur conspécifique. Etant donné les propriétés similaires de CNGA4 et de TRPC2, nous avons supposé que les deux protéines pourraient interagir. Cette hypothèse a été confortée par l'observation que CNGA4 n'est plus exprimée dans les microvillosités du VNO des souris Trpc2-/-. A l'aide d'expériences d'expression hétérologue, nous avons pu observer que les deux protéines interagissent et forment un canal activé par un analogue du diacylglycérol suggérant que ce canal est fonctionnel. Ces résultats indiquent que CNGA4 formerait un canal hétéromérique avec TRPC2 et aurait dans ce canal une fonction modulatrice. Des expériences complémentaires sont nécessaires afin de connaître le rôle de chacune de ces protéines dans la voie de signalisation des phéromones. Sensing pheromones: a role for the CNGA4 and TRPC2 proteins Mammalian pheromones are key chemical signals in the regulation of intraspecies social behaviors. Detection of these pheromones, which takes place in sensory neurons of the vomeronasal organ (VNO), implies the activation of the transient receptor potential canonical channel 2 (TRPC2) as the final effector. Interestingly, discrepancies between Trpc2 /- mice and mice lacking a VNO suggest the implication of another protein in the pheromone signaling pathway. This protein could either form a heteromeric channel with TRPC2 or a separate homomeric ion channel. The cyclic nucleotide-gated channel subunit CNGA4 is also expressed in the rodent VNO but its role and properties in this organ remain unknown. CNGA4 belongs to the CNG channel family which is playing an important role in different sensory pathways such as in light and odorant detection. We thus decided to study the role of the CNGA4 protein in the mouse VNO. We found CNGA4 to be expressed in axons, dendrites and in the sensory microvilli. Using mice bearing a non-functional form of CNGA4 we further demonstrated the importance of the CNGA4 protein for the pheromone signaling pathway as neurons from mutant mice were responding less frequently to chemosensory cues. As a result, mutant mice displayed a non-aggressive behavior and an impaired sexual discrimination ability. Based on the CNGA4 localization and its role in the pheromone signaling pathway we hypothesized a possible interaction between CNGA4 and TRPC2 forming a heteromeric channel. First evidences for this interaction came from the absence of CNGA4 expression in the sensory microvilli of Trpc2-/- mice. Second, using transfected HEK cells as an expression system we could observe that CNGA4 and TRPC2 interact and translocate to the plasma membrane. Perfusion of a DAG analogue on co-transfected HEK cells resulted in a strong calcium entry suggesting that the two proteins form a functional channel. These results might suggest a modulatory role for CNGA4 in a heteromeric TRPC2+CNGA4 ion channel. Further experiments will give more insights on the combined role of these transduction ion channels in pheromone detection.
Resumo:
Understanding how plants sense and respond to heat stress is central to improve crop tolerance and productivity. Recent findings in Physcomitrella patensdemonstrated that the controlled passage of calcium ions across the plasma membrane regulates the heat shock response (HSR). To investigate the effect of membrane lipid composition on the plant HSR, we acclimated P. patens to a slightly elevated yet physiological growth temperature and analysed the signature of calcium influx under a mild heat shock. Compared to tissues grown at 22°C, tissues grown at 32°C had significantly higher overall membrane lipid saturation level and, when submitted to a short heat shock at 35°C, displayed a noticeably reduced calcium influx and a consequent reduced heat shock gene expression. These results show that temperature differences, rather than the absolute temperature, determine the extent of the plant HSR and indicate that membrane lipid composition regulates the calcium-dependent heat-signaling pathway.
Resumo:
Anticoagulants are a mainstay of cardiovascular therapy, and parenteral anticoagulants have widespread use in cardiology, especially in acute situations. Parenteral anticoagulants include unfractionated heparin, low-molecular-weight heparins, the synthetic pentasaccharides fondaparinux, idraparinux and idrabiotaparinux, and parenteral direct thrombin inhibitors. The several shortcomings of unfractionated heparin and of low-molecular-weight heparins have prompted the development of the other newer agents. Here we review the mechanisms of action, pharmacological properties and side effects of parenteral anticoagulants used in the management of coronary heart disease treated with or without percutaneous coronary interventions, cardioversion for atrial fibrillation, and prosthetic heart valves and valve repair. Using an evidence-based approach, we describe the results of completed clinical trials, highlight ongoing research with currently available agents, and recommend therapeutic options for specific heart diseases.
Resumo:
R. solanacearum was ranked in a recent survey the second most important bacterial plant pathogen, following the widely used research model Pseudomonas syringae (Mansfield et al., 2012). The main reason is that bacterial wilt caused by R. solanacearum is the world"s most devastating bacterial plant disease (http://faostat.fao.org), threatening food safety in tropical and subtropical agriculture, especially in China, Bangladesh, Bolivia and Uganda (Martin and French, 1985). This is due to the unusually wide host range of the bacterium, its high persistence and because resistant crop varieties are unavailable. In addition, R. solanacearum has been established as a model bacterium for plant pathology thanks to pioneering molecular and genomic studies (Boucher et al., 1985; Cunnac et al., 2004b; Mukaihara et al., 2010; Occhialini et al., 2005; Salanoubat et al., 2002). As for many bacterial pathogens, the main virulence determinant in R. solanacearum is the type III secretion system (T3SS) (Boucher et al., 1994), which injects a number of effector proteins into plant cells causing disease in hosts or an hypersensitive response in resistant plants. In this article we discuss the current state in the study of the R. solanacearum T3SS, stressing the latest findings and future perspectives.
Resumo:
The main objective of this study was to utilize light detection and ranging (LIDAR) technology to obtain highway safety-related information. The safety needs of older drivers in terms of prolonged reaction times were taken into consideration. The tasks undertaken in this study were (1) identification of crashes that older drivers are more likely to be involved in, (2) identification of highway geometric features that are important in such crashes, (3) utilization of LIDAR data for obtaining information on the identified highway geometric features, and (4) assessment of the feasibility of using LIDAR data for such applications. A review of previous research indicated that older drivers have difficulty negotiating intersections, and it was recognized that intersection sight triangles were critical to safe intersection negotiation. LIDAR data were utilized to obtain information on potential sight distance obstructions at six selected intersections located on the Iowa Highway 1 corridor by conducting in-office line-of-sight analysis. Crash frequency, older driver involvement, and data availability were considerations in the selection of the six intersections. Results of the in-office analysis were then validated by visiting the intersections in the field. Sixty-six potential sight distance obstructions were identified by the line-of-sight analysis, out of which 62 (89.8%) were confirmed while four (5.8%) were not confirmed by the video. At least three (4.4%) potential sight distance obstructions were discovered in the video that were not detected by the line-of-sight analysis. The intersection with the highest crash frequency involving older drivers was correctly found to have obstructions located within the intersection sight triangles. Based on research results, it is concluded that LIDAR data can be utilized for identifying potential sight distance obstructions at intersections. The safety of older drivers can be enhanced by locating and rectifying intersections with obstructions in sight triangles.
Resumo:
This report presents the results of a literature review conducted to evaluate differences in seat belt use by race. A literature review was conducted to evaluate overall seat belt use, racial differences in seat belt use, overall child restraint use, racial differences in child restraint use, and information about seat belt and child restraint use specific to Iowa. A number of national studies and regional studies were found and are presented. Mixed results were found as to whether racial differences exist in both seat belt use and child restraint use. However, in the course of the literature review, several items that are of interest to safety in Iowa have emerged, although little data specific to Iowa was encountered. First, national seat belt use appears to be lower among African-Americans than for Caucasians or Hispanics. Second, national crash rates among Hispanics appear to be higher than those for Caucasians, particularly when population and lower vehicle miles traveled (VMT) are considered. One issue that should be considered throughout this literature review is that the Hispanic population may be higher than reported due to large numbers of undocumented persons who do not appear in population estimates, driver’s license, or other databases.
Resumo:
The Federal Highway Administration mandates that states collect traffic count information at specified intervals to meet the needs of the Highway Performance Monitoring System (HPMS). A manual land use change detection method was employed to determine the effects of land use change on traffic for Black Hawk County, Iowa, from 1994 to 2002. Results from land use change detection could enable redirecting traffic count activities and related data management resources to areas that are experiencing the greatest changes in land use and related traffic volume. Including a manual land use change detection process in the Iowa Department of Transportation’s traffic count program has the potential to improve efficiency by focusing monitoring activities in areas more likely to experience significant increase in traffic.
Resumo:
This report evaluates the use of remotely sensed images in implementing the Iowa DOT LRS that is currently in the stages of system architecture. The Iowa Department of Transportation is investing a significant amount of time and resources into creation of a linear referencing system (LRS). A significant portion of the effort in implementing the system will be creation of a datum, which includes geographically locating anchor points and then measuring anchor section distances between those anchor points. Currently, system architecture and evaluation of different data collection methods to establish the LRS datum is being performed for the DOT by an outside consulting team.