974 resultados para cross-species amplification
Resumo:
Endosymbiotic bacteria of the genus Wolbachia are widespread among arthropods and can induce cytoplasmic incompatibility, thelytokous parthenogenesis, male-killing or feminization in their hosts. Here, we report phylogenetic relationships of Wolbachia in tephritid fruit flies based on wsp gene sequences. We also report, for the first time, five distinct strains of Wolbachia in Bactrocera ascita sp. B. Four of the five Wolbachia strains found in this species were in the same groups as those found in other tephritid fruit flies, suggesting possible horizontal transmission of Wolbachia from other fruit flies into B. ascita sp. B. The unreliability of wsp-specific group primers demonstrated in this study suggests that these primers might be useful only for preliminary identification of Wolbachia. Final determination of group affiliation needs to be verified with wsp sequence data.
Resumo:
Detail view of timber cross-bracing with polycarbonate sheeting behind as seen from upper level dining studio.
Resumo:
Detail view of timber cross-bracing to dining studio, as seen from upper living area.
Resumo:
Detail view of timber cross-bracing with polycarbonate sheeting behind as seen from upper level dining studio.
Resumo:
Old and New World phlebotomine sand fly species were screened for infection with Wolbachia, intracellular bacterial endosymbionts found in many arthropods and filarial nematodes. Of 53 samples representing 15 species, nine samples of four species were found positive for Wolbachia by polymerase chain reaction amplification using primers for the Wolbachia surface protein (wsp) gene. Five of the wsp gene fragments from four species were cloned, sequenced, and used for phylogenetic analysis. These wsp sequences were placed in three different clades within the arthropod associated Wolbachia (groups A and B), suggesting that Wolbachia has infected sand flies on more than one occasion. Two distantly related sand fly species, Lutzomyia (Psanthyromyia) shannoni (Dyar) and Lutzomyia (Nyssomyia) whitmani (Antunes & Coutinho), infected with an identical Wolbachia strain suggest a very recent horizontal transmission.
Resumo:
Wolbachia endosymbiotic bacteria are widespread in arthropods and are also present in filarial nematodes. Almost all filarial species so far examined have been found to harbor these endosymbionts. The sequences of only three genes have been published for nematode Wolbachia (i.e., the genes coding for the proteins FtsZ and catalase and for 16S rRNA). Here we present the sequences of the genes coding for the Wolbachia surface protein (WSP) from the endosymbionts of eight species of filaria. Complete gene sequences were obtained from the endosymbionts of two different species, Dirofilaria immitis and Brugia malayi. These sequences allowed us to design general primers for amplification of the wsp gene from the Wolbachia of all filarial species examined. For these species, partial WSP sequences (about 600 base pairs) were obtained with these primers. Phylogenetic analysis groups these nematode wsp sequences into a coherent cluster. Within the nematode cluster, wsp-based Wolbachia phylogeny matches a previous phylogeny obtained with ftsZ gene sequences, with a good consistency of the phylogeny of hosts (nematodes) and symbionts (Wolbachia). In addition, different individuals of the same host species (Dirofilaria immitis and Wuchereria bancrofti) show identical wsp gene sequences.
Resumo:
Bacterial endosymbionts of insects have long been implicated in the phenomenon of cytoplasmic incompatibility, in which certain crosses between symbiont-infected individuals lead to embryonic death or sex ratio distortion. The taxonomic position of these bacteria has, however, not been known with any certainty. Similarly, the relatedness of the bacteria infecting various insect hosts has been unclear. The inability to grow these bacteria on defined cell-free medium has been the major factor underlying these uncertainties. We circumvented this problem by selective PCR amplification and subsequent sequencing of the symbiont 16S rRNA genes directly from infected insect tissue. Maximum parsimony analysis of these sequences indicates that the symbionts belong in the α-subdivision of the Proteobacteria, where they are most closely related to the Rickettsia and their relatives. They are all closely related to each other and are assigned to the type species Wolbachia pipientis. Lack of congruence between the phylogeny of the symbionts and their insect hosts suggests that horizontal transfer of symbionts between insect species may occur. Comparison of the sequences for W. pipientis and for Wolbachia persica, an endosymbiont of ticks, shows that the genus Wolbachia is polyphyletic. A PCR assay based on 16S primers was designed for the detection of W. pipientis in insect tissue, and initial screening of insects indicates that cytoplasmic incompatibility may be a more general phenomenon in insects than is currently recognized.
Resumo:
Marine invertebrate sperm proteins are particularly interesting because they are characterized by positive selection and are likely to be involved in prezyogotic isolation and, thus, speciation. Here, we present the first survey of inter and intraspecific variation of a bivalve sperm protein among a group of species that regularly hybridize in nature. M7 lysin is found in sperm acrosomes of mussels and dissolves the egg vitelline coat, permitting fertilization. We sequenced multiple alleles of the mature protein-coding region of M7 lysin from allopatric populations of mussels in the Mytilus edulis species group (M. edulis, M. galloprovincialis, and M. trossulus). A significant McDonald-Kreitman test showed an excess of fixed amino acid replacing substitutions between species, consistent with positive selection. In addition, Kolmogorov-Smirnov tests showed significant heterogeneity in polymorphism to divergence ratios for both synonymous variation and combined synonymous and non-synonymous variation within M. galloprovincialis. These results indicate that there has been adaptive evolution at M7 lysin and, furthermore, shows that positive selection on sperm proteins can occur even when post-zygotic reproductive isolation is incomplete.
Resumo:
In this paper, we propose a fast adaptive importance sampling method for the efficient simulation of buffer overflow probabilities in queueing networks. The method comprises three stages. First, we estimate the minimum cross-entropy tilting parameter for a small buffer level; next, we use this as a starting value for the estimation of the optimal tilting parameter for the actual (large) buffer level. Finally, the tilting parameter just found is used to estimate the overflow probability of interest. We study various properties of the method in more detail for the M/M/1 queue and conjecture that similar properties also hold for quite general queueing networks. Numerical results support this conjecture and demonstrate the high efficiency of the proposed algorithm.
Resumo:
Our AUTC Biotechnology study (Phases 1 and 2) identified a range of areas that could benefit from a common approach by universities nationally. A national network of biotechnology educators needs to be solidified through more regular communication, biennial meetings, and development of methods for sharing effective teaching practices and industry placement strategies, for example. Our aims in this proposed study are to: a. Revisit the state of undergraduate biotechnology degree programs nationally to determine their rate of change in content, growth or shrinkage in student numbers (as the biotech industry has had its ups and downs in recent years), and sustainability within their institutions in light of career movements of key personnel, tightening budgets, and governmental funding priorities. b. Explore the feasibility of a range of initiatives to benefit university biotechnology education to determine factors such as how practical each one is, how much buy-in could be gained from potentially participating universities and industry counterparts, and how sustainable such efforts are. One of many such initiatives arising in our AUTC Biotech study was a national register of industry placements for final-year students. c. During scoping and feasibility study, to involve our colleagues who are teaching in biotechnology – and contributing disciplines. Their involvement is meant to yield not only meaningful insight into how to strengthen biotechnology teaching and learning but also to generate ‘buy-in’ on any initiatives that result from this effort.
Resumo:
An emended diagnosis and generic reallocation are proposed for the trilete miospore Indotriradites dolianitii (Daemon, 1974) Loboziak et al., comb. nov. A new species, I. daemonii Loboziak et al., sp. nov., from Viséan strata of Western Gondwana, is erected. These two species, together with I. zosteriformis (Playford et Satterthwait) Playford, 1991 from the Viséan of Australia, belong to a cohesive morphological miospore category, here termed the Indotriradites dolianitii Morphon, which is evidently restricted to the Lower Carboniferous of Gondwana.
Resumo:
A new species of trilete zonate miospores, Radiizonates arcuatus, is established for Lower Carboniferous Western Gondwanan forms hitherto ascribed misguidedly to Radiizonates genuinus (Jushko) Loboziak and Alpern (1978), a Russian Lower Carboniferous species. The latter binomen is, moreover, not a valid combination and is more correctly designated as Vallatisporites genuinus (Jushko) Byvsheva, 1980. R. arcuatus is, from records to date, confined to westerly parts of Gondwana (Brazil, North Africa and Middle East), in which it is characteristic of Early Carboniferous strata, albeit with some slightly older and slightly younger occurrences.
Resumo:
Examines empirically the relative influence of the degree of endangerment of wildlife species and their stated likeability on individuals’ willingness to pay (WTP) for their conservation. To do this, it utilises data obtained from the IUCN Red List and likeability and WTP data obtained from two serial surveys of a sample of the Australian public who were requested to assess 24 Australian wildlife species in each of three animal classes: mammals, birds and reptiles. Between the first and second survey, respondents were provided with extra information about the focal species. This information resulted in the clear dominance of endangerment as the major influence on the WTP of respondents for the conservation of the focal wildlife species. Our results throw doubts on the proposition in the literature that the likeability of species is the dominant influence on WTP for conservation of wildlife species. Furthermore, our results suggest that the relationship between WTP for the conservation of wildlife in relation to their population levels may be more complex and different to that suggested in some of the literature on ecological economics.