954 resultados para creatinine clearance


Relevância:

10.00% 10.00%

Publicador:

Resumo:

O termo vitamina D compreende um grupo de hormônios esteróides com ações biológicas semelhantes. O método mais acurado para determinar o estado de vitamina D é através dos níveis plasmáticos de 25 hidroxivitamina D [25(OH)D]. A deficiência de 25(OH)D é considerada um problema de saúde pública, tendo como principal causa à baixa exposição solar, idade avançada e doenças crônicas. A deficiência de 25(OH)D é frequente em pacientes com doença renal crônica (DRC) na fase não dialítica. Estudos têm evidenciado que os níveis séricos de 25(OH)D apresentam associação inversa com adiposidade corporal e resistência à insulina (RI) na população em geral e na DRC. O excesso de gordura corporal e o risco de Doença Cardiovascular (DVC) vêm sendo estudados em pacientes com DRC e dentre as complicações metabólicas associadas à adiposidade corporal elevada observa-se valores aumentados de HOMA-IR (Homeostasis Model Assessment of Insulin Resistance) um marcador para RI. Estudos avaliando o perfil da 25(OH)D na DRC na fase não dialítica, especialmente relacionados com a adiposidade corporal e RI são escassos. O presente estudo tem como objetivo avaliar a relação entre os níveis séricos de 25(OH)D, RI, e adiposidade corporal em pacientes com DRC na fase não dialítica. Trata-se de um estudo transversal observacional, incluindo pacientes adultos, clinicamente estáveis e com filtração glomerular estimada (FGe) ≤ 60 ml/min., em acompanhamento regular no Núcleo Interdisciplinar de Tratamento da DRC. Os participantes foram submetidos à avaliação do estado nutricional por antropometria (peso, altura, índice de massa corporal (IMC), circunferências e dobras cutâneas) e absorciometria de duplo feixe de raios X (DXA); foram avaliados no sangue: creatinina, uréia, glicose, albumina, colesterol total e frações e triglicérides, além de leptina, insulina e 25(OH)D. Níveis séricos < 20ng/dL de 25(OH)D foram considerados como deficiência. As análises estatísticas foram realizadas utilizando-se o software STATA versão 10.0, StataCorp, College Satation, TX, USA. Foram avaliados 244 pacientes (homens n=135; 55,3%) com média de idade de 66,3 13,4 anos e de FGe= 29,4 12,7 ml/min. O IMC médio foi de 26,1 kg/m (23,0-30,1) com elevada prevalência de sobrepeso/obesidade (58%). A adiposidade corporal total foi elevada em homens (gordura total-DXA= 30,2 7,6%) e mulheres (gordura total-DXA= 39,9 6,6%). O valor mediano de 25(OH) D foi de 28,55 ng/dL (35,30-50,70) e de HOMA-IR foi 1,6 (1,0-2,7). Os pacientes com deficiência de 25(OH)D (n= 51; 20,5%) apresentaram maior adiposidade corporal total (DXA% e BAI %) e central (DXA%) e valores mais elevados de leptina. A 25(OH)D apresentou correlação significante com adiposidade corporal total e central e com a leptina, mas não se associou com valores de HOMA-IR. Estes resultados permitem concluir que nos pacientes DRC fase não dialítica a deficiência de 25(OH)D e a elevada adiposidade corporal são frequentes. Estas duas condições estão fortemente associadas independente da RI; a alta adiposidade corporal total e central estão positivamente relacionadas com RI; 25(OH)H e RI não estão associados nessa população com sobrepeso/obesidade.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Karlodinium veneficum (syn. Karlodinium micrum, Bergholtz et al. 2006; J Phycol 42:170–193) is a small athecate dinoflagellate commonly present in low levels in temperate, coastal waters. Occasionally, K. veneficum forms ichthyotoxic blooms due to the presence of cytotoxic, hemolytic compounds, putatively named karlotoxins. To evaluate the anti-grazing properties of these karlotoxins, we conducted food removal experiments using the cosmopolitan copepod grazer Acartia tonsa. Wild-caught, adult female A. tonsa were exposed to 6 monoalgal or mixed algal diets made using bloom concentrations of toxic (CCMP 2064) and non-toxic (CSIC1) strains of K. veneficum. Ingestion and clearance rates were calculated using the equations of Frost (1972). Exposure to the toxic strain of K. veneficum did not contribute to an increased mortality of the copepods and no significant differences in copepod mortality were found among the experimental diets. However, A. tonsa had significantly greater clearance and ingestion rates when exposed to a monoalgal diet of the non-toxic strain CSIC1 than when exposed to the monoalgal diet of toxic strain CCMP 2064 and mixed diets dominated by this toxic strain. These results support the hypothesis that karlotoxins in certain strains of K. veneficum deter grazing by potential predators and contribute to the formation and continuation of blooms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Detailed measurements have been made of the transient stalling process in an axial compressor stage. The stage is of high hub-casing ratio and stall is initiated in the rotor. If the rotor tip clearance is small stall inception occurs at the hub, but at clearances typical for a multistage compressor the inception is at the tip. The crucial quantity in both cases is the blockage caused by the endwall boundary layer. Prior to stall disturbances rotate around the inlet flow in sympathy with rotating variations in the endwall blockage; these can persist for some time prior to stall, rising and falling in amplitude before the final increase which occurs as the compressor stalls.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Detailed measurements have been made of the transient stalling process in an axial compressor stage. The stage is of high hub-casing ratio and stall is initiated in the rotor. If the rotor tip clearance is small stall inception occurs at the hub, but at clearances typical for a multistage compressor the inception is at the tip. The crucial quantity in both cases is the blockage caused by the endwall boundary layer. Prior to stall, disturbances rotate around the inlet flow in sympathy with rotating variations in the endwall blockage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Local measurements of the heat transfer coefficient and pressure coefficient were conducted on the tip and near tip region of a generic turbine blade in a five-blade linear cascade. Two tip clearance gaps were used: 1.6% and 2.8% chord. Data was obtained at a Reynolds number of 2.3 × 10 5 based on exit velocity and chord. Three different tip geometries were investigated: a flat (plain) tip, a suction-side squealer, and a cavity squealer. The experiments reveal that the flow through the plain gap is dominated by flow separation at the pressure-side edge and that the highest levels of heat transfer are located where the flow reattaches on the tip surface. High heat transfer is also measured at locations where the tip-leakage vortex has impinged onto the suction surface of the aerofoil. The experiments are supported by flow visualisation computed using the CFX CFD code which has provided insight into the fluid dynamics within the gap. The suction-side and cavity squealers are shown to reduce the heat transfer in the gap but high levels of heat transfer are associated with locations of impingement, identified using the flow visualisation and aerodynamic data. Film cooling is introduced on the plain tip at locations near the pressure-side edge within the separated region and a net heat flux reduction analysis is used to quantify the performance of the successful cooling design. copyright © 2005 by ASME.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The food of Penaeus monodon collected from Makato R., from Sept 1977 to Jan 1978 is described with preliminary observations on its feeding habit and rate of foregut clearance. Feeding behaviour appears to be associated with the tidal phase. Foregut clearance rate is rapid, with 95% of food transported from the foregut 4 h after feeding. Frequency of occurrence and proportion of total food of various foregut contents are shown, as are dry weight, percentage mineral, organic and crude protein nitrogen from individual and pooled samples of gut contents, and foregut index in P. monodon collected during different phases of one tidal cycle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At low mass flow rates axial compressors suffer from flow instabilities leading to stall and surge. The inception process of these instabilities has been widely researched in the past - primarily with the aim of predicting or averting stall onset. In recent times, attention has shifted to conditions well before stall and has focussed on the level of irregularity in the blade passing signature in the rotor tip region. In general, this irregularity increases in intensity as the flow rate through the compressor is reduced. Attempts have been made to develop stall warning/avoidance procedures based on the level of the flow irregularity, but little effort has been made to characterise the irregularity, or to understand its underlying causes. Work on this project has revealed for the first time that the increase in irregularity in the blade passing signature is highly dependent on both tip-clearance and eccentricity. In a compressor with small, uniform, tip-clearance, the increase in blade passing irregularity which accompanies a reduction in flow rate will be modest. If the tip-clearance is enlarged, however, there will be a sharp rise in irregularity at all circumferential locations. In a compressor with eccentric tip-clearance, the increase in irregularity will only occur in the part of the annulus where the tip-clearance is largest, regardless of the average clearance level. In this paper, some attention is also given to the question of whether this irregularity observed in the pre-stall flow field is due to random turbulence, or to some form of coherent flow structure. Detailed flow measurements reveal that the latter is the case. From these findings, it is clear that a stall warning system based on blade passing signature irregularity will not be viable in an aero-engine where tip-clearance size and eccentricity change during each flight cycle and over the life of the compressor. Copyright © 2011 by ASME.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The operating range of an axial compressor is often restricted by a safety imposed stall margin. One possible way of regaining operating range is with the application of casing treatment. Of particular interest here is the type of casing treatment which extracts air from a high pressure location in the compressor and re-injects it through discrete loops into the rotor tip region. Existing re-circulation systems have the disadvantage of reducing compressor efficiency at design conditions because worked flow is unnecessarily re-circulated at these operating conditions. Re-circulation is really only needed near stall. This paper proposes a self-regulating casing treatment in which the re-circulated flow is minimized at compressor design conditions and maximized near stall. The self-regulating capability is achieved by taking advantage of changes which occur in the tip clearance velocity and pressure fields as the compressor is throttled toward stall. In the proof-of-concept work reported here, flow is extracted from the high pressure region over the rotor tips and re-injected just upstream of the same blade row. Parametric studies are reported in which the flow extraction and re-injection ports are optimized for location, shape and orientation. The optimized design is shown to compare favorably with a circumferential groove tested in the same compressor. The relationship between stall inception type and casing treatment effectiveness is also investigated. The self-regulating aspect of the new design works well: stall margin improvements from 2.2 to 6.0% are achieved for just 0.25% total air re-circulated near stall and half that near design conditions. The self-regulating capability is achieved by the selective location and orientation of the extraction hole; a simple model is discussed which predicts the optimum axial location. Copyright © 2011 by ASME.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At low mass flow rates, axial compressors suffer from flow instabilities leading to stall and surge. The inception process of these instabilities has been widely researched in the past---primarily with the aim of predicting or averting stall onset. In recent times, attention has shifted to conditions well before stall and has focused on the level of irregularity in the blade passing signature in the rotor tip region. In general, the irregularity increases in intensity as the flow rate through the compressor is reduced. Attempts have been made to develop stall warning/avoidance procedures based on the level of flow irregularity, but little effort has been made to characterize the irregularity itself, or to understand its underlying cause. Work on this project has revealed for the first time that the increase in irregularity in the blade passing signature is highly dependent on both tip-clearance size and eccentricity. In a compressor with small, uniform, tip-clearance, the increase in blade passing irregularity that accompanies a reduction in flow rate will be modest. If the tip-clearance is enlarged, however, there will be a sharp rise in irregularity at all circumferential locations. In a compressor with eccentric tip-clearance, the increase in irregularity will only occur in the part of the annulus where the tip-clearance is largest, regardless of the average clearance level. In this paper, some attention is also given to the question of whether the irregularity observed in the prestall flow field is due to random turbulence or to some form of coherent flow structure. Detailed flow measurements reveal that the latter is the case. From these findings, it is clear that a stall warning system based on blade passing signature irregularity would be difficult to implement in an aero-engine where tip-clearance size and eccentricity change during each flight cycle and over the life of the compressor. © 2013 American Society of Mechanical Engineers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent research revealed that microactuators driven by pressurized fluids are able to generate high power and force densities at microscale. One of the main technological barriers in the development of these actuators is the fabrication low friction seals. This paper presents a novel scalable seal technology, which resists the actuation pressure relying on a combination of a clearance seal and a surface tension seal. This approach allows to seal pressures of more than 800 kPa without leakage. The seal is tested on an actuator with a bore of 0.8 mm2 and a length of 13 mm, which was able to generate forces up to 0.32 N. © 2008 Springer-Verlag.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本文在室内模拟自然水温研究了东湖透明薄皮溞(Leptodora Kindti)对优势枝角类短尾秀体溞(Diaphanosoma brachyurum)和微型裸腹溞(Moina micrura)的捕食效率。实验结果表明,在17℃和21℃时透明薄皮溞对短尾秀体溞的捕食率系数(predation rate coefficient)或称滤过率(clearance rate)分别为15.9和18.2mL predator~(-1)day~(-1)。17℃时透明薄皮溞对微型裸腹溞的捕食率系数为30.1mL preda

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents new experimental measurements of spike-type stall inception. The measurements were carried out in the single stage Deverson compressor at the Whittle Laboratory. The primary objective was to characterize the flow field in the tip clearance gap during stall inception using sufficient instrumentation to give high spatial and temporal resolution. Measurements were recorded using arrays of unsteady pressure transducers over the rotor tips and hot-wires in the tip gap. Pre-stall ensemble averaged velocity and pressure maps were obtained as well as pressure contours of the stall event. In order to study the transient inception process in greater detail, vector maps were built up from hundreds of stalling events using a triggering system based on the stalling event itself. The results show an embryonic disturbance starting within the blade passage and leading to the formation of a clear spike. The origins of the spike and its relation to the tip leakage vortex are discussed. It has also been shown that before stall the flow in the blade passage which is most likely to stall is generally more unsteady, from revolution to revolution, than the other passages in the annulus. Copyright © 2012 by ASME.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An understanding of how pathogens colonize their hosts is crucial for the rational design of vaccines or therapy. While the molecular factors facilitating the invasion and systemic infection by pathogens are a central focus of research in microbiology, the population biological aspects of colonization are still poorly understood. Here, we investigated the early colonization dynamics of Salmonella enterica subspecies 1 serovar Typhimurium (S. Tm) in the streptomycin mouse model for diarrhea. We focused on the first step on the way to systemic infection - the colonization of the cecal lymph node (cLN) from the gut - and studied roles of inflammation, dendritic cells and innate immune effectors in the colonization process. To this end, we inoculated mice with mixtures of seven wild type isogenic tagged strains (WITS) of S. Tm. The experimental data were analyzed with a newly developed mathematical model describing the stochastic immigration, replication and clearance of bacteria in the cLN. We estimated that in the beginning of infection only 300 bacterial cells arrive in the cLN per day. We further found that inflammation decreases the net replication rate in the cLN by 23%. In ccr7-/- mice, in which dendritic cell movement is impaired, the bacterial migration rate was reduced 10-fold. In contrast, cybb-/- mice that cannot generate toxic reactive oxygen species displayed a 4-fold higher migration rate from gut to cLN than wild type mice. Thus, combining infections with mixed inocula of barcoded strains and mathematical analysis represents a powerful method for disentangling immigration into the cLN from replication in this compartment. The estimated parameters provide an important baseline to assess and predict the efficacy of interventions. © 2013 Kaiser et al.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents new experimental measurements of spike-type stall inception. The measurements were carried out in the single stage Deverson compressor at the Whittle Laboratory. The primary objective was to characterize the flow field in the tip clearance gap during stall inception using sufficient instrumentation to give high spatial and temporal resolution. Measurements were recorded using arrays of unsteady pressure transducers over the rotor tips and hot-wires in the tip gap. Prestall ensemble averaged velocity and pressure maps were obtained as well as pressure contours of the stall event. In order to study the transient inception process in greater detail, vector maps were built up from hundreds of stalling events using a triggering system based on the stalling event itself. The results show an embryonic disturbance starting within the blade passage and leading to the formation of a clear spike. The origins of the spike and its relation to the tip leakage vortex are discussed. It has also been shown that before stall, the flow in the blade passage which is most likely to stall is generally more unsteady, from revolution to revolution, than the other passages in the annulus. © 2014 by ASME.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To explore the potential grazing effects of mussels on Microcystis aeruginosa, a common bloom-forming phytoplankton, Unio douglasiae and Corbicula fluminea were fed with Scenedesmus obliquus, toxic and non-toxic strains of Microcystis aeruginosa as single food and as mixtures in the laboratory. When fed with single foods, U. douglasiae has similar clearance rates on the three algae populations, while C. fluminea has significantly lower clearance rate on toxic M. aeruginosa than those on the other two algae populations. When fed with mixture foods, both the mussels show significantly higher clearance rates than on single foods. The clearance rates of U. douglasiae on the different food mixtures are not significantly different, and C. fluminea has a significantly lower clearance rate on the toxic food mixtures than that on non-toxic food mixtures. Although the relative lower clearance rates of C. fluminea on toxic food, we may still deduce that both the mussels can exert grazing pressure on phytoplankton. The deduction is supported by the composition of the excretion products. The excretion products (faeces and pseudofaeces) of both mussels contained mainly S. obliquus. In both mixed-food treatments, the ratios of S. obliquus to M. aeruginosa in the excrete products are significantly higher than those in the foods. Therefore, it can be concluded that both mussels prefer M. aeruginosa to S. obliquus, and can cause grazing pressure on M. aeruginosa.