743 resultados para correctional programs
Resumo:
We present two new algorithms which perform automatic parallelization via source-to-source transformations. The objective is to exploit goal-level, unrestricted independent and-parallelism. The proposed algorithms use as targets new parallel execution primitives which are simpler and more flexible than the well-known &/2 parallel operator. This makes it possible to genérate better parallel expressions by exposing more potential parallelism among the literals of a clause than is possible with &/2. The difference between the two algorithms stems from whether the order of the solutions obtained is preserved or not. We also report on a preliminary evaluation of an implementation of our approach. We compare the performance obtained to that of previous annotation algorithms and show that relevant improvements can be obtained.
Resumo:
We present a static analysis that infers both upper and lower bounds on the usage that a logic program makes of a set of user-definable resources. The inferred bounds will in general be functions of input data sizes. A resource in our approach is a quite general, user-defined notion which associates a basic cost function with elementary operations. The analysis then derives the related (upper- and lower-bound) resource usage functions for all predicates in the program. We also present an assertion language which is used to define both such resources and resourcerelated properties that the system can then check based on the results of the analysis. We have performed some preliminary experiments with some concrete resources such as execution steps, bytes sent or received by an application, number of files left open, number of accesses to a datábase, number of calis to a procedure, number of asserts/retracts, etc. Applications of our analysis include resource consumption verification and debugging (including for mobile code), resource control in parallel/distributed computing, and resource-oriented specialization.
Resumo:
We propose a modular, assertion-based system for verification and debugging of large logic programs, together with several interesting models for checking assertions statically in modular programs, each with different characteristics and representing different trade-offs. Our proposal is a modular and multivariant extensión of our previously proposed abstract assertion checking model and we also report on its implementation in the CiaoPP system. In our approach, the specification of the program, given by a set of assertions, may be partial, instead of the complete specification required by raditional verification systems. Also, the system can deal with properties which cannot always be determined at compile-time. As a result, the proposed system needs to work with safe approximations: all assertions proved correct are guaranteed to be valid and all errors actual errors. The use of modular, context-sensitive static analyzers also allows us to introduce a new distinction between assertions checked in a particular context or checked in general.
Resumo:
Polyvariant specialization allows generating múltiple versions of a procedure, which can then be separately optimized for different uses. Since allowing a high degree of polyvariance often results in more optimized code, polyvariant specializers, such as most partial evaluators, can genérate a large number of versions. This can produce unnecessarily large residual programs. Also, large programs can be slower due to cache miss effects. A possible solution to this problem is to introduce a minimization step which identifies sets of equivalent versions, and replace all occurrences of such versions by a single one. In this work we present a unifying view of the problem of superfluous polyvariance. It includes both partial deduction and abstract múltiple specialization. As regards partial deduction, we extend existing approaches in several ways. First, previous work has dealt with puré logic programs and a very limited class of builtins. Herein we propose an extensión to traditional characteristic trees which can be used in the presence of calis to external predicates. This includes all builtins, librarles, other user modules, etc. Second, we propose the possibility of collapsing versions which are not strictly equivalent. This allows trading time for space and can be useful in the context of embedded and pervasive systems. This is done by residualizing certain computations for external predicates which would otherwise be performed at specialization time. Third, we provide an experimental evaluation of the potential gains achievable using minimization which leads to interesting conclusions.
Resumo:
Several models for context-sensitive analysis of modular programs have been proposed, each with different characteristics and representing different trade-offs. The advantage of these context-sensitive analyses is that they provide information which is potentially more accurate than that provided by context-free analyses. Such information can then be applied to validating/debugging the program and/or to specializing the program in order to obtain important performance improvements. Some very preliminary experimental results have also been reported for some of these models which provided initial evidence on their potential. However, further experimentation, which is needed in order to understand the many issues left open and to show that the proposed modes scale and are usable in the context of large, real-life modular programs, was left as future work. The aim of this paper is two-fold. On one hand we provide an empirical comparison of the different models proposed in previous work, as well as experimental data on the different choices left open in those designs. On the other hand we explore the scalability of these models by using larger modular programs as benchmarks. The results have been obtained from a realistic implementation of the models, integrated in a production-quality compiler (CiaoPP/Ciao). Our experimental results shed light on the practical implications of the different design choices and of the models themselves. We also show that contextsensitive analysis of modular programs is indeed feasible in practice, and that in certain critical cases it provides better performance results than those achievable by analyzing the whole program at once, specially in terms of memory consumption and when reanalyzing after making changes to a program, as is often the case during program development.
Resumo:
The relationship between abstract interpretation [2] and partial evaluation [5] has received considerable attention and (partial) integrations have been proposed starting from both the partial deduction (see e.g. [6] and its references) and abstract interpretation perspectives. Abstract interpretation-based analyzers (such as the CiaoPP analyzer [9,4]) generally compute a program analysis graph [1] in order to propagate (abstract) call and success information by performing fixpoint computations when needed. On the other hand, partial deduction methods [7] incorporate powerful techniques for on-line specialization including (concrete) call propagation and unfolding.
Resumo:
We propose an analysis for detecting procedures and goals that are deterministic (i.e. that produce at most one solution), or predicates whose clause tests are mutually exclusive (which implies that at most one of their clauses will succeed) even if they are not deterministic (because they cali other predicates that can produce more than one solution). Applications of such determinacy information include detecting programming errors, performing certain high-level program transformations for improving search efñciency, optimizing low level code generation and parallel execution, and estimating tighter upper bounds on the computational costs of goals and data sizes, which can be used for program debugging, resource consumption and granularity control, etc. We have implemented the analysis and integrated it in the CiaoPP system, which also infers automatically the mode and type information that our analysis takes as input. Experiments performed on this implementation show that the analysis is fairly accurate and efncient.
Resumo:
We propose a general framework for assertion-based debugging of constraint logic programs. Assertions are linguistic constructions for expressing properties of programs. We define several assertion schemas for writing (partial) specifications for constraint logic programs using quite general properties, including user-defined programs. The framework is aimed at detecting deviations of the program behavior (symptoms) with respect to the given assertions, either at compile-time (i.e., statically) or run-time (i.e., dynamically). We provide techniques for using information from global analysis both to detect at compile-time assertions which do not hold in at least one of the possible executions (i.e., static symptoms) and assertions which hold for all possible executions (i.e., statically proved assertions). We also provide program transformations which introduce tests in the program for checking at run-time those assertions whose status cannot be determined at compile-time. Both the static and the dynamic checking are provably safe in the sense that all errors flagged are definite violations of the pecifications. Finally, we report briefly on the currently implemented instances of the generic framework.
Resumo:
It is generally recognized that information about the runtime cost of computations can be useful for a variety of applications, including program transformation, granularity control during parallel execution, and query optimization in deductive databases. Most of the work to date on compile-time cost estimation of logic programs has focused on the estimation of upper bounds on costs. However, in many applications, such as parallel implementations on distributed-memory machines, one would prefer to work with lower bounds instead. The problem with estimating lower bounds is that in general, it is necessary to account for the possibility of failure of head unification, leading to a trivial lower bound of 0. In this paper, we show how, given type and mode information about procedures in a logic program, it is possible to (semi-automatically) derive nontrivial lower bounds on their computational costs. We also discuss the cost analysis for the special and frequent case of divide-and-conquer programs and show how —as a pragmatic short-term solution —it may be possible to obtain useful results simply by identifying and treating divide-and-conquer programs specially.
Resumo:
We provide a method whereby, given mode and (upper approximation) type information, we can detect procedures and goals that can be guaranteed to not fail (i.e., to produce at least one solution or not termínate). The technique is based on an intuitively very simple notion, that of a (set of) tests "covering" the type of a set of variables. We show that the problem of determining a covering is undecidable in general, and give decidability and complexity results for the Herbrand and linear arithmetic constraint systems. We give sound algorithms for determining covering that are precise and efiicient in practice. Based on this information, we show how to identify goals and procedures that can be guaranteed to not fail at runtime. Applications of such non-failure information include programming error detection, program transiormations and parallel execution optimization, avoiding speculative parallelism and estimating lower bounds on the computational costs of goals, which can be used for granularity control. Finally, we report on an implementation of our method and show that better results are obtained than with previously proposed approaches.
Resumo:
Global analysis of logic programs can be performed effectively by the use of one of several existing efficient algorithms. However, the traditional global analysis scheme in which all the program code is known in advance and no previous analysis information is available is unsatisfactory in many situations. Incrementa! analysis of logic programs has been shown to be feasible and much more efficient in certain contexts than traditional (non-incremental) global analysis. However, incremental analysis poses additional requirements on the fixpoint algorithm used. In this work we identify these requirements, present an important class of strategies meeting the requirements, present sufficient a priori conditions for such strategies, and propose, implement, and evalúate experimentally a novel algorithm for incremental analysis based on these ideas. The experimental results show that the proposed algorithm performs very efficiently in the incremental case while being comparable to (and, in some cases, considerably better than) other state-of-the-art analysis algorithms even for the non-incremental case. We argüe that our discussions, results, and experiments also shed light on some of the many tradeoffs involved in the design of algorithms for logic program analysis.
Resumo:
Abstract is not available.
Resumo:
Abstract is not available.
Resumo:
Abstract interpretation-based data-flow analysis of logic programs is, at this point, relatively well understood from the point of view of general frameworks and abstract domains. On the other hand, comparatively little attention has been given to the problems which arise when analysis of a full, practical dialect of the Prolog language is attempted, and only few solutions to these problems have been proposed to date. Existing proposals generally restrict in one way or another the classes of programs which can be analyzed. This paper attempts to fill this gap by considering a full dialect of Prolog, essentially the recent ISO standard, pointing out the problems that may arise in the analysis of such a dialect, and proposing a combination of known and novel solutions that together allow the correct analysis of arbitrary programs which use the full power of the language.
Resumo:
We study the múltiple specialization of logic programs based on abstract interpretation. This involves in general generating several versions of a program predícate for different uses of such predícate, making use of information obtained from global analysis performed by an abstract interpreter, and finally producing a new, "multiply specialized" program. While the topic of múltiple specialization of logic programs has received considerable theoretical attention, it has never been actually incorporated in a compiler and its effects quantified. We perform such a study in the context of a parallelizing compiler and show that it is indeed a relevant technique in practice. Also, we propose an implementation technique which has the same power as the strongest of the previously proposed techniques but requires little or no modification of an existing abstract interpreter.