920 resultados para cornea epithelium
Resumo:
Introduction: As a result of chronic inflammation during periodontal disease the junctional epithelium becomes micro-ulcerated. The inflammatory process is mediated by both bacterial and host cell products. Host defence peptides such as defensins, secretory leucocyte protease inhibitor (SLPI) and the sole human cathelicidin, LL-37, are secreted by both periodontal cells and neutrophils into gingival crevicular fluid (GCF). They have the ability to modulate the immune response in periodontitis and are thought to have a potential role in periodontal wound healing. Objectives: The aims of this study were to determine the role of LL-37 in the production of Interleukin (IL)-8, IL-6, hepatocyte growth factor (HGF) and basic-fibroblast growth factor (bFGF) by gingival fibroblasts. The role of LL-37 in modulating total matrix metalloproteinase (MMP) activity and expression of tissue inhibitors of metalloproteinase (TIMP)-1 and -2 by gingival fibroblasts was also investigated. Methods: Primary gingival fibroblasts were co-cultured with concentrations of LL-37 (1, 5 and 10µg/ml) for 24 hours and their supernatants tested for levels of IL-8 and IL-6, HGF, bFGF, TIMP-1 and TIMP-2 by ELISA. Rates of MMP turnover in the supernatants were tested by fluorogenic assay using fluorescence resonance energy transfer (FRET) peptide substrates. Cytotoxicity was measured by MTT assay. Statistical significance was measured using the independent t-test and p<0.05 was considered significant. Results: LL-37 significantly upregulated levels of IL-8, IL-6, HGF, bFGF and TIMP-1 (p<0.05) in a dose-dependent fashion. LL-37 significantly decreased the total MMP activity (p<0.05). None of the LL-37 concentrations tested were cytotoxic to gingival fibroblasts. Conclusion: These results indicate that LL-37 is involved in periodontal wound healing. LL-37 increased levels of proinflammatory cytokines and increased levels of growth factors involved in re-epithelialisation. LL-37 has the ability to regulate remodelling of the periodontium by controlling MMP overactivity both directly and by stimulating production of inhibitors by gingival fibroblasts.
Resumo:
Metabolic networks are highly connected and complex, but a single enzyme, O-GlcNAc transferase (OGT) can sense the availability of metabolites and also modify target proteins. We show that inhibition of OGT activity inhibits the proliferation of prostate cancer cells, leads to sustained loss of c-MYC and suppresses the expression of CDK1, elevated expression of which predicts prostate cancer recurrence (p=0.00179). Metabolic profiling revealed decreased glucose consumption and lactate production after OGT inhibition. This decreased glycolytic activity specifically sensitized prostate cancer cells, but not cells representing normal prostate epithelium, to inhibitors of oxidative phosphorylation (rotenone and metformin). Intra-cellular alanine was depleted upon OGT inhibitor treatment. OGT inhibitor increased the expression and activity of alanine aminotransferase (GPT2), an enzyme that can be targeted with a clinically approved drug, cycloserine. Simultaneous inhibition of OGT and GPT2 inhibited cell viability and growth rate, and additionally activated a cell death response. These combinatorial effects were predominantly seen in prostate cancer cells, but not in a cell-line derived from normal prostate epithelium. Combinatorial treatments were confirmed with two inhibitors against both OGT and GPT2. Taken together, here we report the reprogramming of energy metabolism upon inhibition of OGT activity, and identify synergistically lethal combinations that are prostate cancer cell specific.
Resumo:
PURPOSE:
The purpose of this study was to report on Tsukamurella as a mimic of atypical mycobacterial infection.
METHODS:
We report a patient who had received repeated corneal grafts with culture-proven Tsukamurella keratitis.
RESULTS:
A slow-progressing corneal abscess that initially developed adjacent to a corneal stitch responded poorly to empiric antibiotic treatment. A preliminary culture report revealed fast-growing mycobacterial species. Treatment adjustments successfully controlled the disease. A final diagnosis of Tsukamurella was subsequently made on the basis of cultures.
CONCLUSIONS:
Tsukamurella exhibits laboratory similarities to mycobacteria and should be considered in the differential of atypical infection of the ocular surface.
Resumo:
PURPOSE: Recent studies report that increased corneal edema because of contact lens wear under closed lids is associated with elevated Goldmann intraocular pressure (GAT IOP). We sought to assess whether the impact of postoperative corneal edema on GAT IOP would be similar and to determine the differential effect of different amounts of edema. METHODS: The setting is a tertiary level cataract clinic in Shantou, China. Pre- and postoperative (day 1) GAT IOP, central corneal thickness (CCT), corneal hysteresis, corneal resistance factor, and radius of corneal curvature were measured for consecutive patients undergoing phacoemulsification surgery by 2 experienced surgeons. Corneal edema was calculated as the percentage increase in CCT. RESULTS: Among 136 subjects (mean age, 62.5 ± 15.4 years; 53.7% women), the mean increase in CCT was 10.3% postoperatively. Greater corneal edema was associated with lower GAT IOP in unadjusted analyses (P < 0.03) and in linear regression models (P < 0.01). In the model, higher corneal resistance factor (P < 0.001), lower corneal hysteresis (P < 0.001), and steeper radius of corneal curvature (P < 0.001) were associated with higher GAT IOP. Among subjects with edema < the median, edema was associated with lower GAT IOP (P = 0.004), whereas among those with edema ≥ the median, edema was not associated with GAT IOP. An increase in CCT of 7% was associated with an 8 mm Hg underestimation of GAT IOP in our models. CONCLUSIONS: The effect of postoperative edema on GAT IOP seems to be the opposite of contact lens-induced edema. The magnitude of the effect is potentially relevant to patient management.
Resumo:
Development of cribriform morphology (CM) heralds malignant change in human colon but lack of mechanistic understanding hampers preventive therapy. This study investigated CM pathobiology in three-dimensional (3D) Caco-2 culture models of colorectal glandular architecture, assessed translational relevance and tested effects of 1,25(OH)2D3, the active form of vitamin D. CM evolution was driven by oncogenic perturbation of the apical polarity (AP) complex comprising PTEN, CDC42 and PRKCZ (phosphatase and tensin homolog, cell division cycle 42 and protein kinase C zeta). Suppression of AP genes initiated a spatiotemporal cascade of mitotic spindle misorientation, apical membrane misalignment and aberrant epithelial configuration. Collectively, these events promoted “Swiss cheese-like” cribriform morphology (CM) comprising multiple abnormal “back to back” lumens surrounded by atypical stratified epithelium, in 3D colorectal gland models. Intestinal cancer driven purely by PTEN-deficiency in transgenic mice developed CM and in human CRC, CM associated with PTEN and PRKCZ readouts. Treatment of PTEN-deficient 3D cultures with 1,25(OH)2D3 upregulated PTEN, rapidly activated CDC42 and PRKCZ, corrected mitotic spindle alignment and suppressed CM development. Conversely, mutationally-activated KRAS blocked 1,25(OH)2D3 rescue of glandular architecture. We conclude that 1,25(OH)2D3 upregulates AP signalling to reverse CM in a KRAS wild type (wt), clinically predictive CRC model system. Vitamin D could be developed as therapy to suppress inception or progression of a subset of colorectal tumors.
Resumo:
Purpose: To investigate how potentially functional genetic variants are coinherited on each of four common complement factor H (CFH) and CFH-related gene haplotypes and to measure expression of these genes in eye and liver tissues.
Methods: We sequenced the CFH region in four individuals (one homozygote for each of four common CFH region haplotypes) to identify all genetic variants. We studied associations between the haplotypes and AMD phenotypes in 2157 cases and 1150 controls. We examined RNA-seq profiles in macular and peripheral retina and retinal pigment epithelium/choroid/sclera (RCS) from eight eye donors and three liver samples.
Results: The haplotypic coinheritance of potentially functional variants (including missense variants, novel splice sites, and the CFHR3–CFHR1 deletion) was described for the four common haplotypes. Expression of the short and long CFH transcripts differed markedly between the retina and liver. We found no expression of any of the five CFH-related genes in the retina or RCS, in contrast to the liver, which is the main source of the circulating proteins.
Conclusions: We identified all genetic variants on common CFH region haplotypes and described their coinheritance. Understanding their functional effects will be key to developing and stratifying AMD therapies. The small scale of our expression study prevented us from investigating the relationships between CFH region haplotypes and their expression, and it will take time and collaboration to develop epidemiologic-scale studies. However, the striking difference between systemic and ocular expression of complement regulators shown in this study suggests important implications for the development of intraocular and systemic treatments.
Resumo:
PURPOSE. Limited mechanistic understanding of diabetic retinopathy (DR) has hindered therapeutic advances. Berberine, an isoquinolone alkaloid, has shown favorable effects on glucose and lipid metabolism in animal and human studies, but effects on DR are unknown. We previously demonstrated intraretinal extravasation and modification of LDL in human diabetes, and toxicity of modified LDL to human retinal M¨uller cells. We now explore pathogenic effects of modified LDL on M¨uller cells, and the efficacy of berberine in mitigating this cytotoxicity. METHODS. Confluent human M¨uller cells were exposed to in vitro–modified ‘highly oxidized, glycated (HOG-) LDL versus native-LDL (N-LDL; 200 mg protein/L) for 6 or 24 hours, with/ without pretreatment with berberine (5 lM, 1 hour) and/or the adenosine monophosphate (AMP)-activated protein kinase (AMPK) inhibitor, Compound C (5 lM, 1 hour). Using techniques including Western blots, reactive oxygen species (ROS) detection assay, and quantitative real-time PCR, the following outcomes were assessed: cell viability (CCK-8 assay), autophagy (LC3, Beclin-1, ATG-5), apoptosis (cleaved caspase 3, cleaved poly-ADP ribose polymerase), oxidative stress (ROS, nuclear factor erythroid 2-related factor 2, glutathione peroxidase 1, NADPH oxidase 4), angiogenesis (VEGF, pigment epithelium-derived factor), inflammation (inducible nitric oxide synthase, intercellular adhesion molecule 1, IL-6, IL-8, TNF-a), and glial cell activation (glial fibrillary acidic protein). RESULTS. Native-LDL had no effect on cultured human M¨uller cells, but HOG-LDL exhibited marked toxicity, significantly decreasing viability and inducing autophagy, apoptosis, oxidative stress, expression of angiogenic factors, inflammation, and glial cell activation. Berberine attenuated all the effects of HOG-LDL (all P < 0.05), and its effects were mitigated by AMPK inhibition (P < 0.05). CONCLUSIONS. Berberine inhibits modified LDL-induced M¨uller cell injury by activating the AMPK pathway, and merits further study as an agent for preventing and/or treating DR.
Resumo:
Estrogens, such as 17β-estradiol (E2) are essential for normal growth and differentiation of the mammary gland. There are two estrogen receptors (ERs), ERα and ERβ which are ligand activated transcription factors. ERα stimulates proliferation and is the single most powerful predictor of breast cancer prognosis and since 70% of breast cancers express ERα, strategies to block this receptor are the primary breast cancer treatment. Unlike ERα, the role of ERβ in breast cancer and its potential as alternative therapeutic target remains controversial, mainly due to the lack of correlation between results obtained in vitro and epidemiological studies. The aim of this thesis was to increase our understanding of the molecular and cellular mechanisms of estrogen signaling in normal and cancerous cells, in different cellular contexts and with focus on ERβ. In Paper I we characterized the effect of the flavone PD098059 - which is a commonly used MEK1 inhibitor - on activation of transcription by ERα and ERβ. We found that the estrogenic effect of PD098059 is dose dependent in concentrations ranging from 1 – 10 μM and that activation of transcription by ER is suppressed by the inhibitory effect of PD98059 on MEK1 at concentrations above 50 μM. In agreement with its flavone nature, PD098059 had a much stronger effect on ERβ than on ERα transcriptional activity. Therefore, use of this compound for the study of signalling events in cells expressing ER should be carefully considered. In Paper II we assessed the effect of ERβ agonists in vivo and administered under different conditions in vitro. In basal conditions, ERβ induced apoptosis; however, in vivo ERβ agonists stimulated proliferation and inhibited apoptosis. In vivo effects were reproduced in culture, by activation of MAPK/ERK½ pathway with epidermal growth factor or basement membrane extract. In addition, insulin signalling and PI3-K/AKT activation was necessary for stimulation of proliferation. These results suggest that the cellular context modulates ERβ activity. Manuscript presents preliminary work aimed at the set-up of a methodological strategy to isolate ERs and to identify interacting proteins in different cellular contexts and which could modulate the bi-phased effects of ERβ in cell growth. In conclusion, the studies presented in this thesis contribute to clarify the apparent contradictory information regarding ERβ function in normal and cancerous mammary epithelium and suggest that the cellular context should be considered when ERβ effects are studied.
Resumo:
Gonadotrophin-releasing hormone (GnRH) is the main neurohormone controlling gonadotrophin release in all vertebrates, and in teleost fish also of growth hormone and possibly of other adenohypophyseal hormones. Over 20 GnRHs have been identified in vertebrates and protochoordates and shown to bind cognate G-protein couple receptors (GnRHR). We have searched the puffer fish, Fugu rubripes, genome sequencing database, identified five GnRHR genes and proceeded to isolate the corresponding complementary DNAs in European sea bass, Dicentrachus labrax. Phylogenetic analysis clusters the European sea bass, puffer fish and all other vertebrate receptors into two main lineages corresponding to the mammalian type I and II receptors. The fish receptors could be subdivided in two GnRHR1 (A and B) and three GnRHR2 (A, B and C) subtypes. Amino acid sequence identity within receptor subtypes varies between 70 and 90% but only 50–55% among the two main lineages in fish. All European sea bass receptor mRNAs are expressed in the anterior and mid brain, and all but one are expressed in the pituitary gland. There is differential expression of the receptors in peripheral tissues related to reproduction (gonads), chemical senses (eye and olfactory epithelium) and osmoregulation (kidney and gill). This is the first report showing five GnRH receptors in a vertebrate species and the gene expression patterns support the concept that GnRH and GnRHRs play highly diverse functional roles in the regulation of cellular functions, besides the ‘‘classical’’ role of pituitary function regulation.
Resumo:
Ocular pathologies are among the most debilitating medical conditions affecting all segments of the population. Traditional treatment options are often ineffective, and gene therapy has the potential to become an alternative approach for the treatment of several pathologies. Methacrylate polymers have been described as highly biocompatible and are successfully used in medical applications. Due to their cationic nature, these polymers can be used to form polyplexes with DNA for its delivery. This work aims to study the potential of PDMAEMA (poly(2-(N,N’-dimethylamino)ethyl methacrylate)) as a non viral gene delivery system to the retina. The first part of this work aimed to study the potential for gene delivery of a previously synthesized PDMAEMA polymer of high molecular weight (354kDa). In the second part, we synthesized by RAFT a PDMAEMA with a lower molecular weight (103.3kDa) and similarly, evaluated its ability to act as a gene delivery vehicle. PDMAEMA/DNA polyplexes were prepared at 5, 7.5, 10, 12.5 and 20 nitrogen/phosphorous (N/P) ratio for the 354kDa PDMAEMA and at 5 and 7.5 for the 103.3kDa PDMAEMA. Dynamic light scattering and zeta potential measurements confirmed the nanosize and positive charge of polyplexes for all ratios and for both polymers. Both high and low Mw PDMAEMA were able to efficiently complex and protect DNA from DNase I degradation. Their cytotoxicity was evaluated using a non-retinal cell line (HEK293) and a retinal pigment epithelium (RPE) cell line (D407). We have found that cytotoxicity of the free polymer is concentration and time dependent, as expected, and negligible for all the concentrations of the PDMAEMA-DNA polyplexes. Furthermore, for the concentrations to be used in vivo, the 354kDa PDMAEMA showed no signs of inflammation upon injection in the intravitreal space of C57BL/6 mice. The transfection efficiency, as evaluated by fluorescence microscopy and flow cytometry, showed that the D407 retinal cells were transfected by polyplexes of both high and low Mw PDMAEMA, but with varied efficiency, which was dependent on the N/P ratio. Althogether, these results suggest that PDMAEMA is a feasible candidate for non-viral gene delivery to the retina, and this work constitutes the basis of further studies to elucidate the bottleneck in transfection and further optimization of the material.
Resumo:
Dissertação de mestrado, Ciências Biomédicas, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, 2015
Resumo:
Tese de doutoramento, Ciências Biomédicas (Biologia do Desenvolvimento), Universidade de Lisboa, Faculdade de Medicina, 2014
Resumo:
Tese de doutoramento, Biologia (Ecofisiologia), Universidade de Lisboa, Faculdade de Ciências, 2014
Resumo:
Tese de doutoramento, Ciências Biomédicas (Biologia Celular e Molecular), Universidade de Lisboa, Faculdade de Medicina, 2014
Resumo:
Tese de doutoramento, Ciências Biomédicas (Microbiologia e Parasitologia), Universidade de Lisboa, Faculdade de Medicina, 2015