793 resultados para content-based retrieval
Resumo:
Remote sensing is the only practicable means to observe snow at large scales. Measurements from passive microwave instruments have been used to derive snow climatology since the late 1970’s, but the algorithms used were limited by the computational power of the era. Simplifications such as the assumption of constant snow properties enabled snow mass to be retrieved from the microwave measurements, but large errors arise from those assumptions, which are still used today. A better approach is to perform retrievals within a data assimilation framework, where a physically-based model of the snow properties can be used to produce the best estimate of the snow cover, in conjunction with multi-sensor observations such as the grain size, surface temperature, and microwave radiation. We have developed an existing snow model, SNOBAL, to incorporate mass and energy transfer of the soil, and to simulate the growth of the snow grains. An evaluation of this model is presented and techniques for the development of new retrieval systems are discussed.
Resumo:
Overall phylogenetic relationships within the genus Pelargonium (Geraniaceae) were inferred based on DNA sequences from mitochondrial(mt)-encoded nad1 b/c exons and from chloroplast(cp)-encoded trnL (UAA) 5' exon-trnF (GAA) exon regions using two species of Geranium and Sarcocaulon vanderetiae as outgroups. The group II intron between nad1 exons b and c was found to be absent from the Pelargonium, Geranium, and Sarcocaulon sequences presented here as well as from Erodium, which is the first recorded loss of this intron in angiosperms. Separate phylogenetic analyses of the mtDNA and cpDNA data sets produced largely congruent topologies, indicating linkage between mitochondrial and chloroplast genome inheritance. Simultaneous analysis of the combined data sets yielded a well-resolved topology with high clade support exhibiting a basic split into small and large chromosome species, the first group containing two lineages and the latter three. One large chromosome lineage (x = 11) comprises species from sections Myrrhidium and Chorisma and is sister to a lineage comprising P. mutans (x = 11) and species from section Jenkinsonia (x = 9). Sister to these two lineages is a lineage comprising species from sections Ciconium (x = 9) and Subsucculentia (x = 10). Cladistic evaluation of this pattern suggests that x = 11 is the ancestral basic chromosome number for the genus.
Resumo:
The potential of near infrared spectroscopy in conjunction with partial least squares regression to predict Miscanthus xgiganteus and short rotation coppice willow quality indices was examined. Moisture, calorific value, ash and carbon content were predicted with a root mean square error of cross validation of 0.90% (R2 = 0.99), 0.13 MJ/kg (R2 = 0.99), 0.42% (R2 = 0.58), and 0.57% (R2 = 0.88), respectively. The moisture and calorific value prediction models had excellent accuracy while the carbon and ash models were fair and poor, respectively. The results indicate that near infrared spectroscopy has the potential to predict quality indices of dedicated energy crops, however the models must be further validated on a wider range of samples prior to implementation. The utilization of such models would assist in the optimal use of the feedstock based on its biomass properties.
Resumo:
The A-Train constellation of satellites provides a new capability to measure vertical cloud profiles that leads to more detailed information on ice-cloud microphysical properties than has been possible up to now. A variational radar–lidar ice-cloud retrieval algorithm (VarCloud) takes advantage of the complementary nature of the CloudSat radar and Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) lidar to provide a seamless retrieval of ice water content, effective radius, and extinction coefficient from the thinnest cirrus (seen only by the lidar) to the thickest ice cloud (penetrated only by the radar). In this paper, several versions of the VarCloud retrieval are compared with the CloudSat standard ice-only retrieval of ice water content, two empirical formulas that derive ice water content from radar reflectivity and temperature, and retrievals of vertically integrated properties from the Moderate Resolution Imaging Spectroradiometer (MODIS) radiometer. The retrieved variables typically agree to within a factor of 2, on average, and most of the differences can be explained by the different microphysical assumptions. For example, the ice water content comparison illustrates the sensitivity of the retrievals to assumed ice particle shape. If ice particles are modeled as oblate spheroids rather than spheres for radar scattering then the retrieved ice water content is reduced by on average 50% in clouds with a reflectivity factor larger than 0 dBZ. VarCloud retrieves optical depths that are on average a factor-of-2 lower than those from MODIS, which can be explained by the different assumptions on particle mass and area; if VarCloud mimics the MODIS assumptions then better agreement is found in effective radius and optical depth is overestimated. MODIS predicts the mean vertically integrated ice water content to be around a factor-of-3 lower than that from VarCloud for the same retrievals, however, because the MODIS algorithm assumes that its retrieved effective radius (which is mostly representative of cloud top) is constant throughout the depth of the cloud. These comparisons highlight the need to refine microphysical assumptions in all retrieval algorithms and also for future studies to compare not only the mean values but also the full probability density function.
Resumo:
This paper describes advances in ground-based thermodynamic profiling of the lower troposphere through sensor synergy. The well-documented integrated profiling technique (IPT), which uses a microwave profiler, a cloud radar, and a ceilometer to simultaneously retrieve vertical profiles of temperature, humidity, and liquid water content (LWC) of nonprecipitating clouds, is further developed toward an enhanced performance in the boundary layer and lower troposphere. For a more accurate temperature profile, this is accomplished by including an elevation scanning measurement modus of the microwave profiler. Height-dependent RMS accuracies of temperature (humidity) ranging from 0.3 to 0.9 K (0.5–0.8 g m−3) in the boundary layer are derived from retrieval simulations and confirmed experimentally with measurements at distinct heights taken during the 2005 International Lindenberg Campaign for Assessment of Humidity and Cloud Profiling Systems and its Impact on High-Resolution Modeling (LAUNCH) of the German Weather Service. Temperature inversions, especially of the lower boundary layer, are captured in a very satisfactory way by using the elevation scanning mode. To improve the quality of liquid water content measurements in clouds the authors incorporate a sophisticated target classification scheme developed within the European cloud observing network CloudNet. It allows the detailed discrimination between different types of backscatterers detected by cloud radar and ceilometer. Finally, to allow IPT application also to drizzling cases, an LWC profiling method is integrated. This technique classifies the detected hydrometeors into three different size classes using certain thresholds determined by radar reflectivity and/or ceilometer extinction profiles. By inclusion into IPT, the retrieved profiles are made consistent with the measurements of the microwave profiler and an LWC a priori profile. Results of IPT application to 13 days of the LAUNCH campaign are analyzed, and the importance of integrated profiling for model evaluation is underlined.
Resumo:
In the present paper we characterize the statistical properties of non-precipitating tropical ice clouds (deep ice anvils resulting from deep convection and cirrus clouds) over Niamey, Niger, West Africa, and Darwin, northern Australia, using ground-based radar–lidar observations from the Atmospheric Radiation Measurement (ARM) programme. The ice cloud properties analysed in this paper are the frequency of ice cloud occurrence, cloud fraction, the morphological properties (cloud-top height, base height, and thickness), the microphysical and radiative properties (ice water content, visible extinction, effective radius, terminal fall speed, and concentration), and the internal cloud dynamics (in-cloud vertical air velocity). The main highlight of the paper is that it characterizes for the first time the probability density functions of the tropical ice cloud properties, their vertical variability and their diurnal variability at the same time. This is particularly important over West Africa, since the ARM deployment in Niamey provides the first vertically resolved observations of non-precipitating ice clouds in this crucial area in terms of redistribution of water and energy in the troposphere. The comparison between the two sites also provides an additional observational basis for the evaluation of the parametrization of clouds in large-scale models, which should be able to reproduce both the statistical properties at each site and the differences between the two sites. The frequency of ice cloud occurrence is found to be much larger over Darwin when compared to Niamey, and with a much larger diurnal variability, which is well correlated with the diurnal cycle of deep convective activity. The diurnal cycle of the ice cloud occurrence over Niamey is also much less correlated with that of deep convective activity than over Darwin, probably owing to the fact that Niamey is further away from the deep convective sources of the region. The frequency distributions of cloud fraction are strongly bimodal and broadly similar over the two sites, with a predominance of clouds characterized either by a very small cloud fraction (less than 0.3) or a very large cloud fraction (larger than 0.9). The ice clouds over Darwin are also much thicker (by 1 km or more statistically) and are characterized by a much larger diurnal variability than ice clouds over Niamey. Ice clouds over Niamey are also characterized by smaller particle sizes and fall speeds but in much larger concentrations, thereby carrying more ice water and producing more visible extinction than the ice clouds over Darwin. It is also found that there is a much larger occurrence of downward in-cloud air motions less than 1 m s−1 over Darwin, which together with the larger fall speeds retrieved over Darwin indicates that the life cycle of ice clouds is probably shorter over Darwin than over Niamey.
Resumo:
The high complexity of cloud parameterizations now held in models puts more pressure on observational studies to provide useful means to evaluate them. One approach to the problem put forth in the modelling community is to evaluate under what atmospheric conditions the parameterizations fail to simulate the cloud properties and under what conditions they do a good job. It is the ambition of this paper to characterize the variability of the statistical properties of tropical ice clouds in different tropical "regimes" recently identified in the literature to aid the development of better process-oriented parameterizations in models. For this purpose, the statistical properties of non-precipitating tropical ice clouds over Darwin, Australia are characterized using ground-based radar-lidar observations from the Atmospheric Radiation Measurement (ARM) Program. The ice cloud properties analysed are the frequency of ice cloud occurrence, the morphological properties (cloud top height and thickness), and the microphysical and radiative properties (ice water content, visible extinction, effective radius, and total concentration). The variability of these tropical ice cloud properties is then studied as a function of the large-scale cloud regimes derived from the International Satellite Cloud Climatology Project (ISCCP), the amplitude and phase of the Madden-Julian Oscillation (MJO), and the large-scale atmospheric regime as derived from a long-term record of radiosonde observations over Darwin. The vertical variability of ice cloud occurrence and microphysical properties is largest in all regimes (1.5 order of magnitude for ice water content and extinction, a factor 3 in effective radius, and three orders of magnitude in concentration, typically). 98 % of ice clouds in our dataset are characterized by either a small cloud fraction (smaller than 0.3) or a very large cloud fraction (larger than 0.9). In the ice part of the troposphere three distinct layers characterized by different statistically-dominant microphysical processes are identified. The variability of the ice cloud properties as a function of the large-scale atmospheric regime, cloud regime, and MJO phase is large, producing mean differences of up to a factor 8 in the frequency of ice cloud occurrence between large-scale atmospheric regimes and mean differences of a factor 2 typically in all microphysical properties. Finally, the diurnal cycle of the frequency of occurrence of ice clouds is also very different between regimes and MJO phases, with diurnal amplitudes of the vertically-integrated frequency of ice cloud occurrence ranging from as low as 0.2 (weak diurnal amplitude) to values in excess of 2.0 (very large diurnal amplitude). Modellers should now use these results to check if their model cloud parameterizations are capable of translating a given atmospheric forcing into the correct statistical ice cloud properties.
Resumo:
The need for consistent assimilation of satellite measurements for numerical weather prediction led operational meteorological centers to assimilate satellite radiances directly using variational data assimilation systems. More recently there has been a renewed interest in assimilating satellite retrievals (e.g., to avoid the use of relatively complicated radiative transfer models as observation operators for data assimilation). The aim of this paper is to provide a rigorous and comprehensive discussion of the conditions for the equivalence between radiance and retrieval assimilation. It is shown that two requirements need to be satisfied for the equivalence: (i) the radiance observation operator needs to be approximately linear in a region of the state space centered at the retrieval and with a radius of the order of the retrieval error; and (ii) any prior information used to constrain the retrieval should not underrepresent the variability of the state, so as to retain the information content of the measurements. Both these requirements can be tested in practice. When these requirements are met, retrievals can be transformed so as to represent only the portion of the state that is well constrained by the original radiance measurements and can be assimilated in a consistent and optimal way, by means of an appropriate observation operator and a unit matrix as error covariance. Finally, specific cases when retrieval assimilation can be more advantageous (e.g., when the estimate sought by the operational assimilation system depends on the first guess) are discussed.
Resumo:
Developed in response to the new challenges of the social Web, this study investigates how involvement with brand-related user-generated content (UGC) affects consumers’ perceptions of brands. The authors develop a model that provides new insights into the links between drivers of UGC creation, involvement, and consumer-based brand equity. Expert opinions were sought on a hypothesized model, which further was tested through data from an online survey of 202 consumers. The results provide guidance for managerial initiatives involving UGC campaigns for brand building. The findings indicate that consumer perceptions of co-creation, community, and self-concept have a positive impact on UGC involvement that, in turn, positively affects consumer based brand equity. These empirical results have significant implications for avoiding problems and building deeper relationships between consumers and brands in the age of social media.
Resumo:
Accurate observations of cloud microphysical properties are needed for evaluating and improving the representation of cloud processes in climate models and better estimate of the Earth radiative budget. However, large differences are found in current cloud products retrieved from ground-based remote sensing measurements using various retrieval algorithms. Understanding the differences is an important step to address uncertainties in the cloud retrievals. In this study, an in-depth analysis of nine existing ground-based cloud retrievals using ARM remote sensing measurements is carried out. We place emphasis on boundary layer overcast clouds and high level ice clouds, which are the focus of many current retrieval development efforts due to their radiative importance and relatively simple structure. Large systematic discrepancies in cloud microphysical properties are found in these two types of clouds among the nine cloud retrieval products, particularly for the cloud liquid and ice particle effective radius. Note that the differences among some retrieval products are even larger than the prescribed uncertainties reported by the retrieval algorithm developers. It is shown that most of these large differences have their roots in the retrieval theoretical bases, assumptions, as well as input and constraint parameters. This study suggests the need to further validate current retrieval theories and assumptions and even the development of new retrieval algorithms with more observations under different cloud regimes.
Resumo:
Background A whole-genome genotyping array has previously been developed for Malus using SNP data from 28 Malus genotypes. This array offers the prospect of high throughput genotyping and linkage map development for any given Malus progeny. To test the applicability of the array for mapping in diverse Malus genotypes, we applied the array to the construction of a SNPbased linkage map of an apple rootstock progeny. Results Of the 7,867 Malus SNP markers on the array, 1,823 (23.2 %) were heterozygous in one of the two parents of the progeny, 1,007 (12.8 %) were heterozygous in both parental genotypes, whilst just 2.8 % of the 921 Pyrus SNPs were heterozygous. A linkage map spanning 1,282.2 cM was produced comprising 2,272 SNP markers, 306 SSR markers and the S-locus. The length of the M432 linkage map was increased by 52.7 cM with the addition of the SNP markers, whilst marker density increased from 3.8 cM/marker to 0.5 cM/marker. Just three regions in excess of 10 cM remain where no markers were mapped. We compared the positions of the mapped SNP markers on the M432 map with their predicted positions on the ‘Golden Delicious’ genome sequence. A total of 311 markers (13.7 % of all mapped markers) mapped to positions that conflicted with their predicted positions on the ‘Golden Delicious’ pseudo-chromosomes, indicating the presence of paralogous genomic regions or misassignments of genome sequence contigs during the assembly and anchoring of the genome sequence. Conclusions We incorporated data for the 2,272 SNP markers onto the map of the M432 progeny and have presented the most complete and saturated map of the full 17 linkage groups of M. pumila to date. The data were generated rapidly in a high-throughput semi-automated pipeline, permitting significant savings in time and cost over linkage map construction using microsatellites. The application of the array will permit linkage maps to be developed for QTL analyses in a cost-effective manner, and the identification of SNPs that have been assigned erroneous positions on the ‘Golden Delicious’ reference sequence will assist in the continued improvement of the genome sequence assembly for that variety.
Resumo:
Background: Fruit and vegetable-rich diets are associated with a reduced cardiovascular disease (CVD) risk. This protective effect may be a result of the phytochemicals present within fruits and vegetables (F&V). However, there can be considerable variation in the content of phytochemical composition of whole F&V depending on growing location, cultivar, season and agricultural practices, etc. Therefore, the present study investigated the effects of consuming fruits and vegetables as puree-based drinks (FVPD) daily on vasodilation, phytochemical bioavailability, antioxidant status and other CVD risk factors. FVPD was chosen to provide a standardised source of F&V material that could be delivered from the same batch to all subjects during each treatment arm of the study. Methods: Thirty-nine subjects completed the randomised, controlled, cross-over dietary intervention. Subjects were randomised to consume 200 mL of FVPD (or fruit-flavoured control), daily for 6 weeks with an 8-week washout period between treatments. Dietary intake was measured using two 5-day diet records during each cross-over arm of the study. Blood and urine samples were collected before and after each intervention and vasodilation assessed in 19 subjects using laser Doppler imaging with iontophoresis. Results: FVPD significantly increased dietary vitamin C and carotenoids (P < 0.001), and concomitantly increased plasma α- and β-carotene (P < 0.001) with a near-significant increase in endothelium-dependent vasodilation (P = 0.060). Conclusions: Overall, the findings obtained in the present study showed that FVPD were a useful vehicle to increase fruit and vegetable intake, significantly increasing dietary and plasma phytochemical concentrations with a trend towards increased endothelium-dependent vasodilation.
Resumo:
Here we explore the physico-chemical properties of a peptide amphiphile obtained by chemical conjugation of the collagenstimulating peptide KTTKS with 10,12-pentacosadiynoic acid which photopolymerizes as a stable and extended polydiacetylene. We investigate the self-assembly of this new polymer and rationalize its peculiar behavior in terms of a thermal conformational transition. Surprisingly, this polymer shows a thermal transition associated with a non-cooperative increase in b-sheet content at high temperature.