985 resultados para compressed natural gas
Resumo:
Due to experimental difficulties grain size distributions of gas hydrate crystallites are largely unknown in natural samples. For the first time, we were able to determine grain size distributions of six natural gas hydrates for samples retrieved from the Gulf of Mexico and from Hydrate Ridge offshore Oregon from varying depths. High-energy synchrotron radiation provides high photon fluxes as well as high penetration depth and thus allows for investigation of bulk sediment samples. The gas hydrate crystallites appear to be (log-) normally distributed in the natural samples and to be of roughly globular shape. The mean grain sizes are in the range from 300-600 µm with a tendency for bigger grains to occur in greater depth, possibly indicating a difference in the formation age. Laboratory produced methane hydrate, starting from ice and aged for 3 weeks, shows half a log-normal curve with a mean value of ~40 µm. This one order-of-magnitude smaller grain sizes suggests that care must be taken when transposing grain-size sensitive (petro-)physical data from laboratory-made gas hydrates to natural settings.
Resumo:
The grain sizes of gas hydrate crystallites are largely unknown in natural samples. Single grains are hardly detectable with electron or optical microscopy. For the first time, we have used high-energy synchrotron diffraction to determine grain sizes of six natural gas hydrates retrieved from the Bush Hill region in the Gulf of Mexico and from ODP Leg 204 at the Hydrate Ridge offshore Oregon from varying depth between 1 and 101 metres below seafloor. High-energy synchrotron radiation provides high photon fluxes as well as high penetration depth and thus allows for investigation of bulk sediment samples. Gas hydrate grain sizes were measured at the Beam Line BW 5 at the HASYLAB/Hamburg. A 'moving area detector method', originally developed for material science applications, was used to obtain both spatial and orientation information about gas hydrate grains within the sample. The gas hydrate crystal sizes appeared to be (log-)normally distributed in the natural samples. All mean grain sizes lay in the range from 300 to 600 µm with a tendency for bigger grains to occur in greater depth. Laboratory-produced methane hydrate, aged for 3 weeks, showed half a log-normal curve with a mean grain size value of c. 40 µm. The grains appeared to be globular shaped.
Resumo:
At Sleipner, CO2 is being separated from natural gas and injected into an underground saline aquifer for environmental purposes. Uncertainty in the aquifer temperature leads to uncertainty in the in situ density of CO2. In this study, gravity measurements were made over the injection site in 2002 and 2005 on top of 30 concrete benchmarks on the seafloor in order to constrain the in situ CO2 density. The gravity measurements have a repeatability of 4.3 µGal for 2003 and 3.5 µGal for 2005. The resulting time-lapse uncertainty is 5.3 µGal. Unexpected benchmark motions due to local sediment scouring contribute to the uncertainty. Forward gravity models are calculated based on both 3D seismic data and reservoir simulation models. The time-lapse gravity observations best fit a high temperature forward model based on the time-lapse 3D seismics, suggesting that the average in situ CO2 density is about to 530kg/m**3. Uncertainty in determining the average density is estimated to be ±65 kg/m**3 (95% confidence), however, this does not include uncertainties in the modeling. Additional seismic surveys and future gravity measurements will put better constraints on the CO2 density and continue to map out the CO2 flow.
Resumo:
Gas hydrates are icelike materials that form when specific conditions of temperature, pressure, and gas composition are simultaneously satisfied. Among the first descriptions of gas hydrates under natural conditions was that of Hammerschmidt (1940), who found them in pipelines used to transport natural gas. Milton (1976) indicates that conditions are suitable for the presence of gas hydrates in areas affected by permafrost and cites studies suggesting that large quantities of gas exist in hydrate form.
Resumo:
"B-118678."
Resumo:
"April 1978."
Resumo:
"DOE/EIA-0571."
Resumo:
May 1979.
Resumo:
"DOE/EV/04734-T1."
Resumo:
Printed for the use of the Temporary National Economic Committee.
Resumo:
Description based on: NTSB/PAR-98/02/SUM; title from cover.
Resumo:
"No. 122."
Resumo:
Includes index.
Resumo:
Includes a Tentative annual report for 1949 in addition to the regular report.
Resumo:
Mode of access: Internet.