961 resultados para commercial species
Resumo:
We examine the microchemistry of otoliths of cohorts of a fished shed population of the large catadromous fish, barramundi Lates calcarifer from the estuary of a large tropical river. Barramundi from the estuary of the large, heavily regulated Fitzroy River, north eastern Australia were analysed by making transects of 87Sr/86Sr isotope and trace metal/Ca ratios from the core to the outer edge. Firstly, we examined the Sr/Ca, Ba/Ca, Mg/Ca and Mn/Ca and 87Sr/86Sr isotope ratios in otoliths of barramundi tagged in either freshwater or estuarine habitats that were caught by the commercial fishery in the estuary. We used 87Sr/86Sr isotope ratios to identify periods of freshwater residency and assess whether trace metal/Ca ratios varied between habitats. Only Sr/Ca consistently varied between known periods of estuarine or freshwater residency. The relationships between trace metal/Ca and river flow, salinity, temperature were examined in fish tagged and recaptured in the estuary. We found weak and inconsistent patterns in relationships between these variables in the majority of fish. These results suggest that both individual movement history within the estuary and the scale of environmental monitoring were reducing our ability to detect any patterns. Finally, we examined fish in the estuary from two dominant age cohorts (4 and 7 yr old) before and after a large flood in 2003 to ascertain if the flood had enabled fish from freshwater habitats to migrate to the estuary. There was no difference in the proportion of fish in the estuary that had accessed freshwater after the flood. Instead, we found that larger individuals with each age cohort were more likely to have spent a period in freshwater. This highlights the need to maintain freshwater flows in rivers. About half the fish examined had accessed freshwater habitats before capture. Of these, all had spent at least their first two months in marine salinity waters before entering freshwater and some did not enter freshwater until four years of age. This contrasts with the results of several previous studies in other parts of the range that found that access to freshwater swamps by larval barramundi was important for enhanced population productivity and recruitment.
Resumo:
RuvA, along with RuvB, is involved in branch migration of heteroduplex DNA in homologous recombination. The structures of three new crystal forms of RuvA from Mycobacterium tuberculosis (MtRuvA) have been determined. The RuvB-binding domain is cleaved off in one of them. Detailed models of the complexes of octameric RuvA from different species with the Holliday junction have also been constructed. A thorough examination of the structures presented here and those reported earlier brings to light the hitherto unappreciated role of the RuvB-binding domain in determining inter-domain orientation and oligomerization. These structures also permit an exploration of the interspecies variability of structural features such as oligomerization and the conformation of the loop that carries the acidic pin, in terms of amino acid substitutions. These models emphasize the additional role of the RuvB-binding domain in Holliday junction binding. This role along with its role in oligomerization could have important biological implications.
Resumo:
The visual systems of humans and animals represent physical reality in a modified way, depending on the specific demands that the species in question has for survival. The ability to perceive visual illusions is found in independently evolved visual systems, from honeybees to humans. In humans, the ability emerges early, at the age of four months. Thus the perception of illusion is likely to reflect visual processes of fundamental importance for object perception in natural vision. The experiments reported in this thesis employed various modifications of the Kanizsa triangle, a drawn configuration composed of three black disks with missing sectors on a white background. The sectors appear to form the tips of a triangle. The visual system completes the physically empty area between the disks, generally called inducers, with giving the perception of an illusory triangle. The illusory triangle consists of an illusory surface bounded by illusory contours; the triangle appears brighter than and to lie above the background. If the sectors are coloured, the colour fills the illusory area, a phenomenon known as neon colour spreading . We investigated spatial limitations on the perception of Kanizsa-type illusions and how other stimuli and viewing parameters affected these limitations. We also studied complex configurations thick, bent, mobile and chromatic inducers - to determine whether illusions combining several attributes can be perceived. The results suggest that the visual system is highly effective in completing a percept. The perception of an illusory figure is spatially scale invariant when perceived at threshold. The processing time and the number of fixations modify the percept, making the perception of the illusion more probable in various viewing conditions. Furthermore, the fact that the illusion can be perceived when only one inducer is physically present at any given moment indicates the potential of single inducers. Apparently, modelling illusory figure perception will require a combination of low-level, local processes and higher-level integrative processes. Our studies with stimuli combining several attributes relevant to object perception demonstrate that the perception of an illusory figure is flexible and is maintained also when it contains colour and volume and when shown in movement. All in all, the results confirm the assumed importance of the visual processes related with the perception of illusory figures in everyday viewing. This is indicated by the variety of inducer modifications that can be made without destroying the percept. Furthermore, the illusion can acquire additional attributes from such modifications. Due to individual differences in the perception of illusory figures, universal values for absolute performance are not always meaningful, but stable trends and general relations do exist.
Resumo:
Humans are a social species with the internal capability to process social information from other humans. To understand others behavior and to react accordingly, it is necessary to infer their internal states, emotions and aims, which are conveyed by subtle nonverbal bodily cues such as postures, gestures, and facial expressions. This thesis investigates the brain functions underlying the processing of such social information. Studies I and II of this thesis explore the neural basis of perceiving pain from another person s facial expressions by means of functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG). In Study I, observing another s facial expression of pain activated the affective pain system (previously associated with self-experienced pain) in accordance with the intensity of the observed expression. The strength of the response in anterior insula was also linked to the observer s empathic abilities. The cortical processing of facial pain expressions advanced from the visual to temporal-lobe areas at similar latencies (around 300 500 ms) to those previously shown for emotional expressions such as fear or disgust. Study III shows that perceiving a yawning face is associated with middle and posterior STS activity, and the contagiousness of a yawn correlates negatively with amygdalar activity. Study IV explored the brain correlates of interpreting social interaction between two members of the same species, in this case human and canine. Observing interaction engaged brain activity in very similar manner for both species. Moreover, the body and object sensitive brain areas of dog experts differentiated interaction from noninteraction in both humans and dogs whereas in the control subjects, similar differentiation occurred only for humans. Finally, Study V shows the engagement of the brain area associated with biological motion when exposed to the sounds produced by a single human being walking. However, more complex pattern of activation, with the walking sounds of several persons, suggests that as the social situation becomes more complex so does the brain response. Taken together, these studies demonstrate the roles of distinct cortical and subcortical brain regions in the perception and sharing of others internal states via facial and bodily gestures, and the connection of brain responses to behavioral attributes.
Resumo:
Mature green mango fruits of commercially important varieties were screened to investigate the levels of constitutive antifungal compounds in peel and to assess anthracnose disease after inoculation with Colletotrichum gloeosporioides. High pressure liquid chromatography was used to quantify the levels of 5-n-heptadecenylresorcinol and 5-n-pentadecylresorcinol in the peel extracts. The fruit peel of the varieties ‘Kensington Pride’ and ‘Keitt’ were observed to have the highest levels of both 5-n-heptadecenylresorcinol (107.3-123.7 and 49.9-61.4 μg/g FW, respectively) and 5-n-pentadecylresorcinol (6.32-7.99 and 3.30-6.05 μg/g FW, respectively), and the fruit of the two varieties were found to have some resistance to postharvest anthracnose. The varieties ‘Kent’, ‘R2E2’, ‘Nam Doc Mai’, ‘Calypso’, and ‘Honey Gold’ contained much lower concentrations of resorcinols in their peel and three of these varieties were found to be more susceptible to anthracnose. Concentrations of 5-nheptadecenylresorcinol were significantly lower at the ‘sprung’ and ‘eating ripe’ stages of ripening compared to levels at harvest. Concentrations of 5-n-pentadecylresorcinol did not differ significantly across the three stages of ripening. The levels of these two resorcinols were found to be strongly inter-correlated (P < 0.001, r2 = 0.71), with concentrations of 5-nheptadecenylresorcinol being an average 18 times higher than those of 5-npentadecylresorcinol. At the ‘eating ripe’ stage, significant relationships were observed between the concentrations of each type of alk(en)ylresorcinol and anthracnose lesion areas following postharvest inoculation, P<0.001, r2= 0.69 for 5-n pentadecylresorcinol, and P<0.001, r2= 0.44 for 5-n-heptadecenylresorcinol.
Resumo:
Variability of specific leaf area (SLA) across taxa, sites and crown zones was determined for four sub-tropical hardwood species, Eucalyptus grandis, E. cloeziana, E. argophloia and Corymbia citriodora ssp. variegata, growing in south-eastern Queensland. Mean SLA values were stable amongst those taxa sampled on dry sites but varied markedly between provenances of E. grandis on a moist site. Mean SLA did not vary significantly with crown zone in any of these four sub-tropical eucalypts, which is in contrast to that observed in temperate species, both in Australia and overseas. A provenance of E. cloeziana from a moist coastal site exhibited the largest SLA of all taxa studied.
Resumo:
An understanding of growth and photosynthetic potential of subtropical rainforest species to variations in light environment can be useful for determining the sequence of species introductions in rainforest restoration projects and mixed species plantations. We examined the growth and physiology of six Australian subtropical rainforest tree species in a greenhouse consisting of three artificial light environments (10%, 30%, and 60% full sunlight). Morphological responses followed the typical sun-shade dichotomy, with early and late secondary species (Elaeocarpus grandis, Flindersia brayleyana, Flindersia schottiana, and Gmelina leichhardtii) displaying higher relative growth rate (RGR) compared to mature stage species (Cryptocarya erythroxyion and Heritiera trifoliolatum). Growth and photosynthetic performance of most species reached a maximum in 30-60% full sunlight. Physiological responses provided limited evidence of a distinct dichotomy between early and late successional species. E. grandis and F brayleyana, provided a clear representation of early successional species, with marked increase in Am in high light and an ability to down regulate photosynthetic machinery in low light conditions. The remaining species (F. schottiana, G. leichhardtii, and H. trifoliolatum) were better represented as failing along a shade-tolerant continuum, with limited ability to adjust physiologically to an increase or decrease in light, maintaining similar A(max) across all light environments. Results show that most species belong to a shade-tolerant constituency, with an ability to grow and persist across a wide range of light environments. The species offer a wide range of potential planting scenarios and silvicultural options, with ample potential to achieve rapid canopy closure and rainforest restoration goals.
Resumo:
Computer modelling promises to be an important tool for analysing and predicting interactions between trees within mixed species forest plantations. This study explored the use of an individual-based mechanistic model as a predictive tool for designing mixed species plantations of Australian tropical trees. The `spatially explicit individually based-forest simulator' (SeXI-FS) modelling system was used to describe the spatial interaction of individual tree crowns within a binary mixed-species experiment. The three-dimensional model was developed and verified with field data from three forest tree species grown in tropical Australia. The model predicted the interactions within monocultures and binary mixtures of Flindersia brayleyana, Eucalyptus pellita and Elaeocarpus grandis, accounting for an average of 42% of the growth variation exhibited by species in different treatments. The model requires only structural dimensions and shade tolerance as species parameters. By modelling interactions in existing tree mixtures, the model predicted both increases and reductions in the growth of mixtures (up to +/-50% of stem volume at 7 years) compared to monocultures. This modelling approach may be useful for designing mixed tree plantations.
Resumo:
Plant tissue culture has been used for a number of years to produce micropropagated strawberry plants for planting into runner growing beds in the Stanthorpe (Queensland) and Bothwell (Tasmania) regions. This process has allowed the rapid release of new cultivars from the LAWS (Late Autumn, Winter, Spring) breeding program into the current runner production system. Micro-propagation in vitro allows plants to be produced during the autumn and winter months, when mother plants would normally be in a fruit production phase in the field in Queensland. The plants produced are of a high health status when they are planted. The subsequent arrival and build up of various diseases in the runner fields are closely monitored. Using tissue culture for the first generation reduces the time the plants spend in the field by twelve months, reducing disease incidence. To date, any disease outbreak has been successfully managed using early detection and rapid response methods.
Resumo:
An FAO/IAEA Co-ordinated Research Project (CRP) on “Resolution of Cryptic Species Complexes of Tephritid Pests to Overcome Constraints to SIT Application and International Trade” was conducted from 2010 to 2015. As captured in the CRP title, the objective was to undertake targeted research into the systematics and diagnostics of taxonomically challenging fruit fly groups of economic importance. The scientific output was the accurate alignment of biological species with taxonomic names; which led to the applied outcome of assisting FAO and IAEA Member States in overcoming technical constraints to the application of the Sterile Insect Technique (SIT) against pest fruit flies and the facilitation of international agricultural trade. Close to 50 researchers from over 20 countries participated in the CRP, using coordinated, multidisciplinary research to address, within an integrative taxonomic framework, cryptic species complexes of major tephritid pests. The following progress was made for the four complexes selected and studied: Anastrepha fraterculus complex – Eight morphotypes and their geographic and ecological distributions in Latin America were defined. The morphotypes can be considered as distinct biological species on the basis of differences in karyotype, sexual incompatibility, post-mating isolation, cuticular hydrocarbon, pheromone, and molecular analyses. Discriminative taxonomic tools using linear and geometric morphometrics of both adult and larval morphology were developed for this complex. Bactrocera dorsalis complex – Based on genetic, cytogenetic, pheromonal, morphometric, and behavioural data, which showed no or only minor variation between the Asian/African pest fruit flies Bactrocera dorsalis, B. papayae, B. philippinensis and B. invadens, the latter three species were synonymized with B. dorsalis. Of the five target pest taxa studied, only B. dorsalis and B. carambolae remain as scientifically valid names. Molecular and pheromone markers are now available to distinguish B. dorsalis from B. carambolae. Ceratitis FAR Complex (C. fasciventris, C. anonae, C. rosa) – Morphology, morphometry, genetic, genomic, pheromone, cuticular hydrocarbon, ecology, behaviour, and developmental physiology data provide evidence for the existence of five different entities within this fruit fly complex from the African region. These are currently recognised as Ceratitis anonae, C. fasciventris (F1 and F2), C. rosa and a new species related to C. rosa (R2). The biological limits within C. fasciventris (i.e. F1 and F2) are not fully resolved. Microsatellites markers and morphological identification tools for the adult males of the five different FAR entities were developed based on male leg structures. Zeugodacus cucurbitae (formerly Bactrocera (Zeugodacus) cucurbitae) – Genetic variability was studied among melon fly populations throughout its geographic range in Africa and the Asia/Pacific region and found to be limited. Cross-mating studies indicated no incompatibility or sexual isolation. Host preference and genetic studies showed no evidence for the existence of host races. It was concluded that the melon fly does not represent a cryptic species complex, neither with regard to geographic distribution nor to host range. Nevertheless, the higher taxonomic classification under which this species had been placed, by the time the CRP was started, was found to be paraphyletic; as a result the subgenus Zeugodacus was elevated to genus level.
Resumo:
Tephritid fruit flies (Diptera: Tephritidae) are considered by far the most important group of horticultural pests worldwide. Female fruit flies lay eggs directly into ripening fruit, where the maggots feed causing fruit loss. Each and every continent is plagued by a number of fruit fly pests, both indigenous as well as invasive ones, causing tremendous economic losses. In addition to the direct losses through damage, they can negatively impact commodity trade through restrictions to market access. The quarantine and regulatory controls put in place to manage them are expensive, while the on-farm control costs and loss of crop affect the general well-being of growers. These constraints can have huge implications on loss in revenues and limitations to developing fruit and vegetable-based agroindustries in developing, emergent and developed nations. Because fruit flies are a global problem, the study of their biology and management requires significant international attention to overcome the hurdles they pose. The Joint Food and Agriculture Organisation / International Atomic Energy Agency (FAO/IAEA) Programme on Nuclear Techniques in Food and Agriculture has been on the foreground in assisting Member States in developing and validating environment-friendly fruit fly suppression systems to support viable fresh fruit and vegetable production and export industries. Such international attention has resulted in the successful development and validation of a Sterile Insect Technique (SIT) package for the Mediterranean fruit fly. Although demands for R&D support with respect to Mediterranean fruit fly are diminishing due to successful integration of this package into sustainable control programmes against this pest in many countries, there were increasing demands from Member States in Africa, Asia and Latin America, to address other major fruit fly pests and a related, but sometimes neglected issue of tephritid species complexes of economic importance. Any research, whether it is basic or applied, requires a taxonomic framework that provides reliable and universally recognized entities and names. Among the currently recognized major fruit fly pests, there are groups of species whose morphology is very similar or identical, but biologically they are distinct species. As such, some insect populations that are grouped taxonomically within the same pest species, display different biological and genetic traits and show reproductive isolation which suggest that they are different species. On the other hand, different species may have been taxonomically described, but there may be doubt as to whether they actually represent distinct biological species or merely geographical variants of the same species. This uncertain taxonomic status has practical implications on the effective development and use of the SIT against such complexes, particularly at the time of determining which species to mass-rear, and significantly affects international movement of fruit and vegetables through the establishment of trade barriers to important agricultural commodities which are hosts to these pest tephritid species...
Resumo:
Paropsine chrysomelid beetles are significant defoliators of Australian eucalypts. In Queensland, the relatively recent expansion of hardwood plantations has resulted in the emergence of new pest species. Here I identify paropsine beetles collected from Eucalyptus cloeziana Muell. and E. dunnii Maiden, two of the major Eucalyptus species grown in plantations in south-eastern Queensland, and estimate the relative abundance of each paropsine species. Although I was unable to identify all taxa to species level, at least 17 paropsine species were collected, about one-third of which have not been previously associated with hardwood plantations. Paropsis atomaria Olivier and P. charybdis Stål were the most abundant species collected in E. cloeziana plantations, while Chrysophtharta cloelia (Stål) and P. atomaria were most commonly collected from E. dunnii. Occasional collections from Corymbia citriodora (Hook.) Hill and Johns, ssp. variegata revealed an additional four species implicated in plantation damage. Abundance and voltinism varied between species and sites. I predict which paropsine species are likely to threaten plantation productivity.
Resumo:
The effectiveness of the neonicotinoid insecticide imidacloprid was evaluated against four psocid pests of stored grain. This research was undertaken because of the growing importance of psocids in stored grain and the need to identify methods for their control. The mortality and reproduction of adults of Liposcelis bostrychophila Badonnel, L. entomophila (Enderlein), L. decolor (Pearman) and L. paeta Pearman in wheat treated with imidacloprid were determined. There were five application rates (0.5, 1, 2, 5 and 10 mg AI kg -1 grain) and an untreated control. There were significant effects of application rate on both adult mortality and reproduction for all four species, but the effect of imidacloprid was sometimes more pronounced on reproduction. Imidacloprid was most effective against L. bostrychophila, with 100% adult mortality after 7 d at 5 mg AI kg-1, 14 d at 2 mg AI kg-1 and 28 d at 0.5 and 1 mg AI kg-1. No live progeny were produced at 2 mg AI kg-1. For L. decolor, there was 100% adult mortality after 28 d at 10 mg AI kg-1 and no live progeny were produced at 2 mg AI kg-1. For L. entomophila, there was 100% adult mortality after 14 d at 10 mg AI kg-1 and 28 d at 2 and 5 mg AI kg-1. No live progeny were produced at 10 mg AI kg-1. At 10 mg AI kg-1 there was 100% mortality of L. paeta adults after 28 d exposure and no live progeny developed. Because reproduction at some application rates occurred only in the first 14 d of exposure, it is concluded that the application rate leading to population extinction was 1 mg AI kg-1 for L. bostrychophila, 2 mg AI kg-1 for L. decolor and L. entomophila and 5 mg AI kg -1 for L. paeta. This study shows that imidacloprid has potential as a grain protectant to control all four Liposcelis species in stored grain.
Resumo:
This paper describes the establishment of provenance seedling seed orchards of three spotted gums and cadaga (all species of Corymbia ex Eucalyptus). It also discusses the limitations of growing the spotted gums as pure species including: lack of mass flowering, susceptibility to a fungal shoot blight and low amenability to vegetative propagation. These limitations, together with observation of putative natural hybrids of the spotted gums with cadaga, and the early promise of manipulated hybrids, led to an intensive breeding and testing program. Many hybrid families have significant advantages in growth and tolerance to disease, insects and frost, and can be vegetatively propagated. They also exhibit broad environmental plasticity, allowing the best varieties to be planted across a wider range of sites than the spotted gums, resulting in more land being suitable for plantation development.
Resumo:
To quantify the role of Johnson grass, Sorghum halepense, in the population dynamics of the sorghum midge, Stenodiplosis sorghicola, patterns of flowering of Johnson grass and infestation by sorghum midge were studied in two different climatic environments in the Lockyer Valley and on the Darling Downs in south-eastern Queensland for 3 years. Parasitism levels of S. sorghicola were also recorded. In the Lockyer Valley, Johnson grass panicles were produced throughout the year but on the Darling Downs none were produced between June and September. In both areas, most panicle production occurred between November and March and infestation by S. sorghicola was the greatest during this period. The parasitism levels were between 20% and 50%. After emergence from winter diapause, one to two generations of S. sorghicola developed on S. halepense before commercial grain sorghum crops were available for infestation. Parasitoids recorded were: Aprostocetus diplosidis, Eupelmus australiensis and two species of Tetrastichus. Relationships between sorghum midge population growth rate and various environmental and population variables were investigated. Population size had a significant negative effect (P < 0.0001) on population growth rate. Mortality due to parasitism showed a significant positive density response (P < 0.0001). Temperature, rainfall, open pan evaporation, degree-days and host availability showed no significant effect on population growth rate. Given the phenology of sorghum production in south-eastern Queensland, Johnson grass provides an important bridging host, sustaining one to two generations of sorghum midge. Critical studies relating population change and build-up in sorghum to sorghum midge populations in Johnson grass are yet to be performed.