688 resultados para city’s image
Resumo:
Image stitching is the process of joining several images to obtain a bigger view of a scene. It is used, for example, in tourism to transmit to the viewer the sensation of being in another place. I am presenting an inexpensive solution for automatic real time video and image stitching with two web cameras as the video/image sources. The proposed solution relies on the usage of several markers in the scene as reference points for the stitching algorithm. The implemented algorithm is divided in four main steps, the marker detection, camera pose determination (in reference to the markers), video/image size and 3d transformation, and image translation. Wii remote controllers are used to support several steps in the process. The built‐in IR camera provides clean marker detection, which facilitates the camera pose determination. The only restriction in the algorithm is that markers have to be in the field of view when capturing the scene. Several tests where made to evaluate the final algorithm. The algorithm is able to perform video stitching with a frame rate between 8 and 13 fps. The joining of the two videos/images is good with minor misalignments in objects at the same depth of the marker,misalignments in the background and foreground are bigger. The capture process is simple enough so anyone can perform a stitching with a very short explanation. Although real‐time video stitching can be achieved by this affordable approach, there are few shortcomings in current version. For example, contrast inconsistency along the stitching line could be reduced by applying a color correction algorithm to every source videos. In addition, the misalignments in stitched images due to camera lens distortion could be eased by optical correction algorithm. The work was developed in Apple’s Quartz Composer, a visual programming environment. A library of extended functions was developed using Xcode tools also from Apple.
Resumo:
Tests on printed circuit boards and integrated circuits are widely used in industry,resulting in reduced design time and cost of a project. The functional and connectivity tests in this type of circuits soon began to be a concern for the manufacturers, leading to research for solutions that would allow a reliable, quick, cheap and universal solution. Initially, using test schemes were based on a set of needles that was connected to inputs and outputs of the integrated circuit board (bed-of-nails), to which signals were applied, in order to verify whether the circuit was according to the specifications and could be assembled in the production line. With the development of projects, circuit miniaturization, improvement of the production processes, improvement of the materials used, as well as the increase in the number of circuits, it was necessary to search for another solution. Thus Boundary-Scan Testing was developed which operates on the border of integrated circuits and allows testing the connectivity of the input and the output ports of a circuit. The Boundary-Scan Testing method was converted into a standard, in 1990, by the IEEE organization, being known as the IEEE 1149.1 Standard. Since then a large number of manufacturers have adopted this standard in their products. This master thesis has, as main objective: the design of Boundary-Scan Testing in an image sensor in CMOS technology, analyzing the standard requirements, the process used in the prototype production, developing the design and layout of Boundary-Scan and analyzing obtained results after production. Chapter 1 presents briefly the evolution of testing procedures used in industry, developments and applications of image sensors and the motivation for the use of architecture Boundary-Scan Testing. Chapter 2 explores the fundamentals of Boundary-Scan Testing and image sensors, starting with the Boundary-Scan architecture defined in the Standard, where functional blocks are analyzed. This understanding is necessary to implement the design on an image sensor. It also explains the architecture of image sensors currently used, focusing on sensors with a large number of inputs and outputs.Chapter 3 describes the design of the Boundary-Scan implemented and starts to analyse the design and functions of the prototype, the used software, the designs and simulations of the functional blocks of the Boundary-Scan implemented. Chapter 4 presents the layout process used based on the design developed on chapter 3, describing the software used for this purpose, the planning of the layout location (floorplan) and its dimensions, the layout of individual blocks, checks in terms of layout rules, the comparison with the final design and finally the simulation. Chapter 5 describes how the functional tests were performed to verify the design compliancy with the specifications of Standard IEEE 1149.1. These tests were focused on the application of signals to input and output ports of the produced prototype. Chapter 6 presents the conclusions that were taken throughout the execution of the work.
Resumo:
AIRES, Kelson R. T. ; ARAÚJO, Hélder J. ; MEDEIROS, Adelardo A. D. . Plane Detection from Monocular Image Sequences. In: VISUALIZATION, IMAGING AND IMAGE PROCESSING, 2008, Palma de Mallorca, Spain. Proceedings..., Palma de Mallorca: VIIP, 2008
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presents a method for automatic identification of dust devils tracks in MOC NA and HiRISE images of Mars. The method is based on Mathematical Morphology and is able to successfully process those images despite their difference in spatial resolution or size of the scene. A dataset of 200 images from the surface of Mars representative of the diversity of those track features was considered for developing, testing and evaluating our method, confronting the outputs with reference images made manually. Analysis showed a mean accuracy of about 92%. We also give some examples on how to use the results to get information about dust devils, namelly mean width, main direction of movement and coverage per scene. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Image restoration attempts to enhance images corrupted by noise and blurring effects. Iterative approaches can better control the restoration algorithm in order to find a compromise of restoring high details in smoothed regions without increasing the noise. Techniques based on Projections Onto Convex Sets (POCS) have been extensively used in the context of image restoration by projecting the solution onto hyperspaces until some convergence criteria be reached. It is expected that an enhanced image can be obtained at the final of an unknown number of projections. The number of convex sets and its combinations allow designing several image restoration algorithms based on POCS. Here, we address two convex sets: Row-Action Projections (RAP) and Limited Amplitude (LA). Although RAP and LA have already been used in image restoration domain, the former has a relaxation parameter (A) that strongly depends on the characteristics of the image that will be restored, i.e., wrong values of A can lead to poorly restoration results. In this paper, we proposed a hybrid Particle Swarm Optimization (PS0)-POCS image restoration algorithm, in which the A value is obtained by PSO to be further used to restore images by POCS approach. Results showed that the proposed PSO-based restoration algorithm outperformed the widely used Wiener and Richardson-Lucy image restoration algorithms. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Jet impingement erosion test rig has been used to erode titanium alloy specimens (Ti-4Al-4V). Eroded surface profiles have been obtained by vertical sectioning method for light microscopy observation. Mixed fractals have been measured from profile images by a digital image processing and analysis technique. The use of this technique allows glimpsing a quantitative correlation among material properties, fractal surface topography and erosion phenomena. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
A set of NIH Image macro programs was developed to make qualitative and quantitative analyses from digital stereo pictures produced by scanning electron microscopes. These tools were designed for image alignment, anaglyph representation, animation, reconstruction of true elevation surfaces, reconstruction of elevation profiles, true-scale elevation mapping and, for the quantitative approach, surface area and roughness calculations. Limitations on time processing, scanning techniques and programming concepts are also discussed.
Resumo:
An automatic image processing and analysis technique has been developed for quantitative characterization of multi-phase materials. For the development of this technique is used the Khoros system that offers the basic morphological tools and a flexible, visual programming language. These techniques are implemented in a highly user oriented image processing environment that allows the user to adapt each step of the processing to his special requirements.To illustrate the implementation and performance of this technique, images of two different materials are processed for microstructure characterization. The result is presented through the determination of volume fraction of the different phases or precipitates.
Resumo:
This work is an example of the improvement on quantitative fractography by means of digital image processing and light microscopy. Two techniques are presented to investigate the quantitative fracture behavior of Ti-4Al-4V heat-treated alloy specimens, under Charpy impact testing. The first technique is the Minkowski method for fractal dimension measurement from surface profiles, revealing the multifractal character of Ti-4Al-4V fracture. It was not observed a clear positive correlation of fractal values against Charpy energies for Ti-4Al-4V alloy specimens, due to their ductility, microstructural heterogeneities and the dynamic loading characteristics at region near the V-notch. The second technique provides an entire elevation map of fracture surface by extracting in-focus regions for each picture from a stack of images acquired at successive focus positions, then computing the surface roughness. Extended-focus reconstruction has been used to explain the behavior along fracture surface. Since these techniques are based on light microscopy, their inherent low cost is very interesting for failure investigations.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We present the construction of a homogeneous phantom to be used in simulating the scattering and absorption of X-rays by a standard patient chest and skull when irradiated laterally. This phantom consisted of Incite and aluminium plates with their thickness determined by a tomographic exploratory method applied to the anthropomorphic phantom. Using this phantom, an optimized radiographic technique was established for chest and skull of standard sized patient in lateral view. Images generated with this optimized technique demonstrated improved image quality and reduced radiation doses. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)