976 resultados para cholinergic nerve
Resumo:
We identify an actin-based protrusive structure in growth cones termed “intrapodium.” Unlike filopodia, intrapodia are initiated exclusively within lamellipodia and elongate in a continuous (nonsaltatory) manner parallel to the plane of the dorsal plasma membrane causing a ridge-like protrusion. Intrapodia resemble the actin-rich structures induced by intracellular pathogens (e.g., Listeria) or by extracellular beads. Cytochalasin B inhibits intrapodial elongation and removal of cytochalasin B produced a burst of intrapodial activity. Electron microscopic studies revealed that lamellipodial intrapodia contain both short and long actin filaments oriented with their barbed ends toward the membrane surface or advancing end. Our data suggest an interaction between microtubule endings and intrapodia formation. Disruption of microtubules by acute nocodazole treatment decreased intrapodia frequency, and washout of nocodazole or addition of the microtubule-stabilizing drug Taxol caused a burst of intrapodia formation. Furthermore, individual microtubule ends were found near intrapodia initiation sites. Thus, microtubule ends or associated structures may regulate these actin-dependent structures. We propose that intrapodia are the consequence of an early step in a cascade of events that leads to the development of F-actin-associated plasma membrane specializations.
Resumo:
Attempts to rescue retinal ganglion cells from retrograde degeneration have had limited success, and the residual function of surviving neurons is not known. Recently, it has been found that axotomized retinal ganglion cells die by apoptotic mechanisms. We have used adult transgenic mice overexpressing the Bcl-2 protein, a powerful inhibitor of apoptosis, as a model for preventing injury-induced cell death in vivo. Several months after axotomy, the majority of retinal ganglion cells survived and exhibited normal visual responses. In control wild-type mice, the vast majority of axotomized retinal ganglion cells degenerated, and the physiological responses were abolished. These results suggest that strategies aimed at increasing Bcl-2 expression, or mimicking its function, might effectively counteract trauma-induced cell death in the central nervous system. Neuronal survival is a necessary condition in the challenge for promoting regeneration and eventually restoring neuronal function.
Resumo:
Neurotrophic factors such as nerve growth factor (NGF) promote a wide variety of responses in neurons, including differentiation, survival, plasticity, and repair. Such actions often require changes in gene expression. To identify the regulated genes and thereby to more fully understand the NGF mechanism, we carried out serial analysis of gene expression (SAGE) profiling of transcripts derived from rat PC12 cells before and after NGF-promoted neuronal differentiation. Multiple criteria supported the reliability of the profile. Approximately 157,000 SAGE tags were analyzed, representing at least 21,000 unique transcripts. Of these, nearly 800 were regulated by 6-fold or more in response to NGF. Approximately 150 of the regulated transcripts have been matched to named genes, the majority of which were not previously known to be NGF-responsive. Functional categorization of the regulated genes provides insight into the complex, integrated mechanism by which NGF promotes its multiple actions. It is anticipated that as genomic sequence information accrues the data derived here will continue to provide information about neurotrophic factor mechanisms.
Resumo:
We describe experiments on behaving rats with electrodes implanted on the cornea, in the optic chiasm, and on the visual cortex; in addition, two red light-emitting diodes (LED) are permanently attached to the skull over the left eye. Recordings timelocked to the LED flashes reveal both the local events at each electrode site and the orderly transfer of visual information from retina to cortex. The major finding is that every stimulus, regardless of its luminance, duration, or the state of retinal light adaptation, elicits an optic nerve volley with a latency of about 10 ms and a duration of about 300 ms. This phenomenon has not been reported previously, so far as we are aware. We conclude that the retina, which originates from the forebrain of the developing embryo, behaves like a typical brain structure: it translates, within a few hundred milliseconds, the chemical information in each pattern of bleached photoreceptors into a corresponding pattern of ganglion cell neuronal information that leaves via the optic nerve. The attributes of each rat ganglion cell appear to include whether the retinal neuropile calls on it to leave after a stimulus and, if so when, within a 300-ms poststimulus epoch. The resulting retinal analysis of the scene, on arrival at the cortical level, is presumed to participate importantly in the creation of visual perceptual experiences.
Resumo:
Cardiac myocytes have been shown to express constitutively endothelial nitric oxide synthase (eNOS) (nitric oxide synthase 3), the activation of which has been implicated in the regulation of myocyte L-type voltage-sensitive calcium channel current (ICa-L) and myocyte contractile responsiveness to parasympathetic nervous system signaling, although this implication remains controversial. Therefore, we examined the effect of the muscarinic cholinergic agonist carbachol (CCh) on ICa-L and contractile amplitude in isoproterenol (ISO)-prestimulated ventricular myocytes isolated from adult mice, designated eNOSnull mice, with targeted disruption of the eNOS gene. Although both eNOSnull and wild-type (WT) ventricular myocytes exhibited similar increases in ICa-L in response to ISO, there was no measurable suppression of ICa-L by CCh in cells from eNOSnull mice, in contrast to cells from WT mice. These results were reflected in the absence of an effect of CCh on the positive inotropic effect of ISO in eNOSnull myocytes. Also, unlike myocytes from WT animals, eNOSnull myocytes failed to exhibit an increase in cGMP content in response to CCh. Nevertheless, the pharmacologic nitric oxide donors 3-morpholino-sydnonimine and S-nitroso-acetyl-cystein increased cGMP generation and suppressed ISO-augmented ICa-L in eNOSnull cells, suggesting that the signal transduction pathway(s) downstream of eNOS remained intact. Of importance, activation of the acetylcholine-activated K+ channel by CCh was unaffected in atrial and ventricular eNOSnull myocytes. These results confirm the obligatory role of eNOS in coupling muscarinic receptor activation to cGMP-dependent control of ICa-L in cardiac myocytes.
Resumo:
Stimulation of β-adrenergic receptors (BAR) by clenbuterol (CLE) increases nerve growth factor (NGF) biosynthesis in the rat cerebral cortex but not in other regions of the brain. We have explored the transcription mechanisms that may account for the cortex-specific activation of the NGF gene. Although the NGF promoter contains an AP-1 element, AP-1-binding activity in the cerebral cortex was not induced by CLE, suggesting that other transcription factors govern the brain area-specific induction of NGF. Because BAR activation increases cAMP levels, we examined the role of CCAAT/enhancer-binding proteins (C/EBP), some of which are known to be cAMP-inducible. In C6–2B glioma cells, whose NGF expression is induced by BAR agonists, (i) CLE increased C/EBPδ-binding activity, (ii) NGF mRNA levels were increased by overexpressing C/EBPδ, and (iii) C/EBPδ increased the activity of an NGF promoter–reporter construct. Moreover, DNase footprinting and deletion analyses identified a C/EBPδ site in the proximal region of the NGF promoter. C/EBPδ appears to be responsible for the BAR-mediated activation of the NGF gene in vivo, since CLE elicited a time-dependent increase in C/EBPδ-binding activity in the cerebral cortex only. Our data suggest that, while AP-1 may regulate basal levels of NGF expression, C/EBPδ is a critical component determining the area-specific expression of NGF in response to BAR stimulation.
Resumo:
In adult forebrain, nerve growth factor (NGF) influences neuronal maintenance and axon sprouting and is neuroprotective in several injury models through mechanisms that are incompletely understood. Most NGF signaling is thought to occur after internalization and retrograde transport of trkA receptor and be mediated through the nucleus. However, NGF expression in hippocampus is rapidly and sensitively regulated by synaptic activity, suggesting that NGF exerts local effects more dynamically than possible through signaling requiring retrograde transport to distant afferent neurons. Interactions have been reported between NGF and nitric oxide (NO). Because NO affects both neural plasticity and degeneration, and trk receptors can mediate signaling within minutes, we hypothesized that NGF might rapidly modulate NO production. Using in vivo microdialysis we measured conversion of l-[14C]arginine to l-[14C]citrulline as an accurate reflection of NO synthase (NOS) activity in adult rat hippocampus. NGF significantly reduced NOS activity to 61% of basal levels within 20 min of onset of delivery and maintained NOS activity at less than 50% of baseline throughout 3 hr of delivery. This effect did not occur with control protein (cytochrome c) and was not mediated by an effect of NGF on glutamate levels. In addition, simultaneous delivery of NGF prevented significant increases in NOS activity triggered by the glutamate receptor agonists N-methyl-d-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA). Rapid suppression by NGF of basal and glutamate-stimulated NOS activity may regulate neuromodulatory functions of NO or protect neurons from NO toxicity and suggests a novel mechanism for rapidly mediating functions of NGF and other neurotrophins.
Resumo:
We have studied the in vivo signaling mechanisms involved in nociceptin/orphanin FQ (Noci)-induced pain responses by using a flexor-reflex paradigm. Noci was 10,000 times more potent than substance P (SP) in eliciting flexor responses after intraplantar injection into the hind limb of mice, but the action of Noci seems to be mediated by SP. Mice pretreated with an NK1 tachykinin receptor antagonist or capsaicin, or mice with a targeted disruption of the tachykinin 1 gene no longer respond to Noci. The action of Noci appears to be mediated by the Noci receptor, a pertussis toxin-sensitive G protein–coupled receptor that stimulates inositol trisphosphate receptor and Ca2+ influx. These findings suggest that Noci indirectly stimulates nerve endings of nociceptive primary afferent neurons through a local SP release.
Resumo:
We report the cloning and characterization of rat α10, a previously unidentified member of the nicotinic acetylcholine receptor (nAChR) subunit gene family. The protein encoded by the α10 nAChR subunit gene is most similar to the rat α9 nAChR, and both α9 and α10 subunit genes are transcribed in adult rat mechanosensory hair cells. Injection of Xenopus laevis oocytes with α10 cRNA alone or in pairwise combinations with either α2-α6 or β2-β4 subunit cRNAs yielded no detectable ACh-gated currents. However, coinjection of α9 and α10 cRNAs resulted in the appearance of an unusual nAChR subtype. Compared with homomeric α9 channels, the α9α10 nAChR subtype displays faster and more extensive agonist-mediated desensitization, a distinct current–voltage relationship, and a biphasic response to changes in extracellular Ca2+ ions. The pharmacological profiles of homomeric α9 and heteromeric α9α10 nAChRs are essentially indistinguishable and closely resemble those reported for endogenous cholinergic eceptors found in vertebrate hair cells. Our data suggest that efferent modulation of hair cell function occurs, at least in part, through heteromeric nAChRs assembled from both α9 and α10 subunits.
Resumo:
In this report we provide evidence that neuronal nicotinic acetylcholine receptors (nAChRs) are present on hippocampal astrocytes and their activation produces rapid currents and calcium transients. Our data indicate that these responses obtained from astrocytes are primarily mediated by an AChR subtype that is functionally blocked by α-bungarotoxin (αBgt) and contains the α7 subunit (αBgt-AChRs). Furthermore, their action is unusual in that they effectively increase intracellular free calcium concentrations by activating calcium-induced calcium release from intracellular stores, triggered by influx through the receptor channels. These results reveal a mechanism by which αBgt-AChRs on astrocytes can efficiently modulate calcium signaling in the central nervous system in a manner distinct from that observed with these receptors on neurons.
Resumo:
In postnatal tissues, angiogenesis occurs in nontumoral conditions on appropriate stimuli. In the nervous tissue, hypoxia, neural graft, increased neural function, and synaptic activity are associated with neoangiogenesis. We have investigated the occurrence of neoangiogenesis in the superior cervical ganglia (scg) of newborn rats treated for 8–21 days with 6-hydroxy-dopamine (6-OHDA), nerve growth factor (NGF), or 6-OHDA + NGF. The two latter treatments induced a significant increase in scg size. However, the increase after combined treatment far exceeded that of NGF alone. Similarly, histological and histochemical analysis revealed neuronal hypertrophy and endothelial cell hyperplasia associated with stromal hypertrophy (as described by laminin immunostaining) and increased vascular bed (as revealed by platelet/endothelial cell adhesion molecule-1 immunostaining) in 6-OHDA + NGF-treated pups. NGF, either alone or associated with 6-OHDA, also induced a significant up-regulation of NADPH diaphorase, neuronal nitric oxide synthase, and vascular endothelial growth factor expression in scg neurons. The present investigation suggests that the increase of scg size induced by NGF and 6-OHDA + NGF is associated with neoangiogenesis, and that the induction of vasoactive and angiogenic factors in neurons represents a further and previously undisclosed effect of NGF.
Resumo:
Nerve growth factor (NGF) is a polypeptide which, in addition to its effect on nerve cells, is believed to play a role in inflammatory responses and in tissue repair. Because fibroblasts represent the main target and effector cells in these processes, to investigate whether NGF is involved in lung and skin tissue repair, we studied the effect of NGF on fibroblast migration, proliferation, collagen metabolism, modulation into myofibroblasts, and contraction of collagen gel. Both skin and lung fibroblasts were found to produce NGF and to express tyrosine kinase receptor (trkA) under basal conditions, whereas the low-affinity p75 receptor was expressed only after prolonged NGF exposure. NGF significantly induced skin and lung fibroblast migration in an in vitro model of wounded fibroblast and skin migration in Boyden chambers. Nevertheless NGF did not influence either skin or lung fibroblast proliferation, collagen production, or metalloproteinase production or activation. In contrast, culture of both lung and skin fibroblasts with NGF modulated their phenotype into myofibroblasts. Moreover, addition of NGF to both fibroblast types embedded in collagen gel increased their contraction. Fibrotic human lung or skin tissues displayed immunoreactivity for NGF, trkA, and p75. These data show a direct pro-fibrogenic effect of NGF on skin and lung fibroblasts and therefore indicate a role for NGF in tissue repair and fibrosis.
Resumo:
We review the mechanical origin of auditory-nerve excitation, focusing on comparisons of the magnitudes and phases of basilar-membrane (BM) vibrations and auditory-nerve fiber responses to tones at a basal site of the chinchilla cochlea with characteristic frequency ≈ 9 kHz located 3.5 mm from the oval window. At this location, characteristic frequency thresholds of fibers with high spontaneous activity correspond to magnitudes of BM displacement or velocity in the order of 1 nm or 50 μm/s. Over a wide range of stimulus frequencies, neural thresholds are not determined solely by BM displacement but rather by a function of both displacement and velocity. Near-threshold, auditory-nerve responses to low-frequency tones are synchronous with peak BM velocity toward scala tympani but at 80–90 dB sound pressure level (in decibels relative to 20 microPascals) and at 100–110 dB sound pressure level responses undergo two large phase shifts approaching 180°. These drastic phase changes have no counterparts in BM vibrations. Thus, although at threshold levels the encoding of BM vibrations into spike trains appears to involve only relatively minor signal transformations, the polarity of auditory-nerve responses does not conform with traditional views of how BM vibrations are transmitted to the inner hair cells. The response polarity at threshold levels, as well as the intensity-dependent phase changes, apparently reflect micromechanical interactions between the organ of Corti, the tectorial membrane and the subtectorial fluid, and/or electrical and synaptic processes at the inner hair cells.