663 resultados para brine valorisation
Resumo:
Honey bees are considered keystone species in ecosystem, the effect of harmful pesticides for the honey bees, the action of extreme climatic waves and their consequence on honey bees health can cause the loss of many colonies which could contribute to the reduction of the effective population size and incentive the use of non-autochthonous queens to replace dead colonies. Over the last decades, the use of non-ligustica bee subspecies in Italy has increased and together with the mentioned phenomena exposed native honey bees to hybridization, laeding to a dramatic loss of genetic erosion and admixture. Healthy genetic diversity within honey bee populations is critical to provide tolerance and resistance to current and future threatening. Nowadays it is urgent to design strategies for the conservation of local subspecies and their valorisation on a productive scale. In this Thesis we applied genomics tool for the analysis of the genetic diversity and the genomic integrity of honey bee populations in Italy are described. In this work mtDNA based methods are presented using honey bee DNA or honey eDNA as source of information of the genetic diversity of A. mellifera at different level. Taken together, the results derived from these studies should enlarge the knowledge of the genetic diversity and integrity of the honey bee populations in Italy, filling the gap of information necessary to design efficient conservation programmes. Furthermore, the methods presented in these works will provide a tool for the honey authentication to sustain and valorise beekeeping products and sector against frauds.
Resumo:
Sensory analysis is a scientific discipline used to evoke, measure, analyse and interpret the responses to products that are perceived by the senses of sight, smell, taste, touch and hearing. This science is used to highlight the strengths and characteristics of a product, such as in the case of research and development products where alternative ingredients, food waste or by-products are used. It can also be used to evaluate the same characteristics over time, to highlight alterations in one of the sensory components at a given time or over time. This doctoral thesis deals with the valorisation, through characterisation, of various aquaculture fish products. In particular, the products covered by this study were analysed, depending on the objective pursued, with different sensory methods using trained judges and in one case consumers. Therefore, the sensory characterisation of the products was useful for investigating the foods considered in this doctoral research. In particular, specific research topics were taken: 1. The study of alternative ingredients, such as the outcomes of different levels of inclusion of insect larvae (Hermetia illucens) meal on the quality of sea bream (Sparus aurata) fillets. 2. The study of consumer expectations and perceptions on the use of insect meal as a feed for aquaculture products. In particular, this study was done after the characterisation by Quantitative Descriptive analysis (QDA) of the products to exclude sensory differences. 3. Development of a non-destructive and cheap device based on dielectric spectroscopy for assessing fish freshness. In particular in this study, the developed device was evaluated in correlation with a sensory method for assessing the freshness of fish product, the Quality Index Method (QIM)
Resumo:
Plastic is an essential asset for the modern lifestyle, given its superiority as a material from the points of view of cost, processability and functional properties. However, plastic-related environmental pollution has become nowadays a very significant problem that can no longer be overlooked. For this reason, in recent decades, the research for new materials that could replace fossil fuel-based plastics has been focused on biopolymers with similar physicochemical properties to fossil fuel-based plastics, such as Polyhydroxyalkanoates (PHA). PHAs are a family of biodegradable polyesters synthesized by many microorganisms as carbon and energy reserves. PHA appears as a good candidate to substitute conventional petroleum-based plastics since it has similar properties, but with the advantage of being biobased and biodegradable, and has a wide range of applications (e.g., packaging). However, the PHA production cost is almost four times higher (€5/kg) than conventional plastic manufacturing. The PHA production by mixed microbial cultures (MMC) allows to reduce production costs as it does not require aseptic conditions and it enables the use of inexpensive by-products or waste streams as these cultures are more amenable to deal with complex feedstocks. Saline wastewaters (WWs), generated by several industries such as seafood, leather and dairy, are often rich in organic compounds and, due to a strong salt inhibition, the biological treatments are inefficient, and their disposal is expensive. These saline WWs are a potential feedstock for PHA production, as they are an inexpensive raw material. Moreover, saline WWs could allow the utilization of seawater in the process as dilution and cleaning agent, further decreasing the operational costs and the environmental burden of the process. The main goal of the current project is to assess and optimize the PHA production from a mixture of food waste and brine wastewater from the fishery industry by MMC.