995 resultados para block exemption regulation
Resumo:
N(6)-methyl-adenines can serve as epigenetic signals for interactions between regulatory DNA sequences and regulatory proteins that control cellular functions, such as the initiation of chromosome replication or the expression of specific genes. Several of these genes encode master regulators of the bacterial cell cycle. DNA adenine methylation is mediated by Dam in gamma-proteobacteria and by CcrM in alpha-proteobacteria. A major difference between them is that CcrM is cell cycle regulated, while Dam is active throughout the cell cycle. In alpha-proteobacteria, GANTC sites can remain hemi-methylated for a significant period of the cell cycle, depending on their location on the chromosome. In gamma-proteobacteria, most GATC sites are only transiently hemi-methylated, except regulatory GATC sites that are protected from Dam methylation by specific DNA-binding proteins.
Resumo:
Selostus: Kylvötiheyden ja kasvunsääteiden vaikutus kevätrukiin satoon
Resumo:
S100A1 is a Ca(2+)-binding protein and predominantly expressed in the heart. We have generated a mouse line of S100A1 deficiency by gene trap mutagenesis to investigate the impact of S100A1 ablation on heart function. Electrocardiogram recordings revealed that after beta-adrenergic stimulation S100A1-deficient mice had prolonged QT, QTc and ST intervals and intraventricular conduction disturbances reminiscent of 2 : 1 bundle branch block. In order to identify genes affected by the loss of S100A1, we profiled the mutant and wild type cardiac transcriptomes by gene array analysis. The expression of several genes functioning to the electrical activity of the heart were found to be significantly altered. Although the default prediction would be that mRNA and protein levels are highly correlated, comprehensive immunoblot analyses of salient up- or down-regulated candidate genes of any cellular network revealed no significant changes on protein level. Taken together, we found that S100A1 deficiency results in cardiac repolarization delay and alternating ventricular conduction defects in response to sympathetic activation accompanied by a significantly different transcriptional regulation.
Resumo:
Résumé : Le cancer, qui est responsable d'un quart des décès en Suisse, exhibe un état cellulaire désordonné, qui lui-même, est la conséquence d'un dérèglement des gènes. Le gène le plus fréquemment altéré, dans les cas de cancers humains, est p53. Ce gène encode un facteur de transcription, impliqué dans la régulation de nombreux gènes impliqués dans le cycle cellulaire, l'apoptose ou la différenciation. Notre laboratoire a récemment identifié seize nouveaux gènes, dont l'expression est régulée par p53, parmi lesquels sept4, su jet de cette thèse. La protéine 5EPT4 appartient à la famille des septines, qui est impliquée dans la cytokinèse. Dans ce travail, nous avons confirmé la régulation de l'expression de sept4 par p53 dans des tissus de souris, et étonnamment, seul un des deux promoteurs du gène sept4 est contrôlé par p53. En outre, l'approche immunohistologique nous a permis de supposer une implication de la protéine SEPT4 dans le mécanisme de l'exocytose. Cette hypothèse a été confirmée par l'interaction de SEPT4 avec la protéine syntaxine 1A, et par son activité inhibitrice sur la sécrétion stimulée. En élargissant l'étude de la protéine SEPT4, nous avons découvert que celle-ci avait comme partenaire fonctionnel, la protéine Pinl, une enzyme qui catalyse l'isomérisation cis-trans du lien peptidique précédant une proline. bans ce contexte, nous avons démontré que l'interaction entre ces deux protéines reposait sur le domaine WW de Pinl, un type de domaine reconnaissant les motifs phosphoséryl-prolyl et phosphothréonyl-prolyl. Ce dernier résultat nous a conduit à examiner la phosphorylation de 5EPT4. Nous avons démontré que la partie N-terminale de SEPT4 était phosphorylée par la kinase Cdk5. La co¬expression de Cdk5 et de SEPT4 stimule la dégradation de SEPT4, indépendamment de la voie du protéasome. Ainsi, l'ensemble de nos observations fournissent l'évidence de l'engagement de la protéine SEPT4 dans la régulation de l'exocytose, et soutiennent le rôle de p53 dans le contrôle de l'exocytose, via SEPT4, ce qui constituerait un nouveau rôle fonctionnel pour ce gardien du génome. Summary: Cancer, which is responsible for a quarter of the deaths in Switzerland, exhibits a disordered cellular state, which itself, is the consequence of an altered state of genes. The most frequently altered gene in human cancer is p53. This gene encodes a transcription factor, implicated in the regulation of numerous genes involved in cell cycle, apoptosis or differentiation. Our laboratory has recently identified sixteen new genes whose expression is regulated by p53, amongst them septin 4, which is the subject of this thesis. The SEPT4 protein belongs to the septin family which is implicated in cytokinesis. In the present work, we have confirmed the regulation of sept4 expression by p53 in mouse tissues, and surprisingly, only one of the two sept4 promoters is regulated by p53. In addition, the immunohistologic approach enabled us to suppose a role of SEPT4 in exocytosis. This assumption was confirmed by the interaction of SEPT4 with syntaxin 1A, and by its inhibiting activity on stimulated secretion. By widening the analysis of SEPT4, we identified Pin1 as an interacting protein. Pin1 is an enzyme which catalyzes the cis-trans isomerization of the peptide bond preceding a proline residue. In this context, we showed that the interaction between these two proteins depends on the WW domain of Pin 1. This domain has been shown to function as a phosphoserine- or phosphothreonine¬binding module. This last result prompted us to examine phosphorylation of SEPT4. We demonstrated that the N-terminal portion of SEPT4 was phosphorylated by the Cdk5 kinase. The co-expression of Cdk5 with 5EPT4 stimulates SEPT4 degradation, independently of the proteasome pathway. Thus, these observations provide evidence for the engagement of SEPT4 in the regulation of exocytosis, and supports the role of p53 in the control of exocytosis, via SEPT4, which constitutes a new functional role for this guardian of the genome.
Resumo:
Uplift gradients can provide the location of highly strained zones, which can be considered to be seismic. The Turan block (Central Asia) contains zones with high gradient of uplift velocities, above the threshold 0.04mm km-1year-1. Some of these zones are associated with important seismic activity and others are not correlated with any recent important recorded earthquakes, however, recent faults scarps as well as diverted rivers may indicate a recent tectonic activity. This threshold of gradient is probably a significant rheologic property of the upper crust. On the basis of these considerations the Uzboy river area is proposed as a potential high seismic hazard zone.
Resumo:
Resolution of lesions induced by Leishmania major in mice results from the development of Th1 responses. Cytokines produced by Th1 cells activate macrophages to a parasiticidal state. The development of Th2 responses in mice from a few strains underlies susceptibility to infection. Cytokines produced by Th2 cells exacerbate the development of lesions because of their deactivating properties for macrophages. This murine model of infection has provided significant insight into the mechanisms intrinsic to the differentiation of disparate CD4+ T cell subsets in vivo in animals from different genetic backgrounds.
Resumo:
BACKGROUND: The differentiation of CD8+ T lymphocytes following priming of naïve cells is central in the establishment of the adaptive immune response. Yet, the molecular events underlying this process are not fully understood. MicroRNAs have been recently shown to play a key role in the regulation of haematopoiesis in mouse, but their implication in peripheral lymphocyte differentiation in humans remains largely unknown. METHODS: In order to explore the potential implication of microRNAs in CD8+ T cell differentiation in humans, microRNA expression profiles were analysed using microarrays and quantitative PCR in several human CD8+ T cell subsets defining the major steps of the T cell differentiation pathway. RESULTS: We found expression of a limited set of microRNAs, including the miR-17~92 cluster. Moreover, we reveal the existence of differentiation-associated regulation of specific microRNAs. When compared to naive cells, miR-21 and miR-155 were indeed found upregulated upon differentiation to effector cells, while expression of the miR-17~92 cluster tended to concomitantly decrease. CONCLUSIONS: This study establishes for the first time in a large panel of individuals the existence of differentiation associated regulation of microRNA expression in human CD8+ T lymphocytes in vivo, which is likely to impact on specific cellular functions.
Resumo:
The CD44 adhesion receptor is silenced in highly malignant neuroblastomas (NBs) with MYCN amplification. Because its functional expression is associated with decreased tumorigenic properties, CD44 behaves as a tumor suppressor gene in NB and other cancers. Given that the precise mechanisms responsible for CD44 silencing are not elucidated, we investigated whether CD44 expression could be regulated by DNA hypermethylation. The methylation status of CD44 gene promoter and exon 1 regions was analyzed in 12 NB cell lines and 21 clinical samples after bisulfite genomic modification, followed by PCR and single-strand conformation polymorphism analysis and genomic sequencing. The results showed that almost all CD44-negative cell lines displayed hypermethylation in both regions, whereas all CD44-expressing cell lines were unmethylated. These observations correlated with the ability to restore CD44 mRNA and protein expression by treatment of CD44-negative cells with the 5-aza-2'-deoxycytidine demethylating agent. In contrast, no CD44 gene hypermethylation could be detected in 21 NB clinical samples of different stages, irrespective of CD44 expression. Although our results suggest that aberrant methylation of promoter and exon 1 regions is involved in CD44 silencing in NB cell lines, they also indicate that methylation of unidentified regulatory sequences or methylation-independent mechanisms also control the expression of CD44 in primary NB tumors and cell lines. We therefore conclude that CD44 silencing is controlled by complex and tumor cell-specific processes, including gene hypermethylation. Further investigation of other mechanisms and genes involved in CD44 regulation will be needed before demethylation-mediated reactivation of the CD44 gene can be considered as therapeutic strategy for neuroblastoma and perhaps other related cancers.
Resumo:
c-Src is a non-receptor tyrosine kinase involved in numerous signal transduction pathways. The kinase,SH3 and SH2 domains of c-Src are attached to the membrane-anchoring SH4 domain through the flexible Unique domain. Here we show intra- and intermolecular interactions involving the Unique and SH3 domains suggesting the presence of a previously unrecognized additional regulation layer in c-Src. We have characterized lipid binding by the Unique and SH3 domains, their intramolecular interaction and its allosteric modulation by a SH3-binding peptide or by Calcium-loaded calmodulin binding to the Unique domain. We also show reduced lipid binding following phosphorylation at conserved sites of the Unique domain. Finally, we show that injection of full-length c-Src with mutations that abolish lipid binding by the Unique domain causes a strong in vivo phenotype distinct from that of wild-type c-Src in a Xenopus oocyte model system, confirming the functional role of the Unique domain in c-Src regulation.
Resumo:
Lipin 1 is a coregulator of DNA-bound transcription factors and a phosphatidic acid (PA) phosphatase (PAP) enzyme that catalyzes a critical step in the synthesis of glycerophospholipids. Lipin 1 is highly expressed in adipocytes, and constitutive loss of lipin 1 blocks adipocyte differentiation; however, the effects of Lpin1 deficiency in differentiated adipocytes are unknown. Here we report that adipocyte-specific Lpin1 gene recombination unexpectedly resulted in expression of a truncated lipin 1 protein lacking PAP activity but retaining transcriptional regulatory function. Loss of lipin 1-mediated PAP activity in adipocytes led to reduced glyceride synthesis and increased PA content. Characterization of the deficient mice also revealed that lipin 1 normally modulates cAMP-dependent signaling through protein kinase A to control lipolysis by metabolizing PA, which is an allosteric activator of phosphodiesterase 4 and the molecular target of rapamycin. Consistent with these findings, lipin 1 expression was significantly related to adipose tissue lipolytic rates and protein kinase A signaling in adipose tissue of obese human subjects. Taken together, our findings identify lipin 1 as a reciprocal regulator of triglyceride synthesis and hydrolysis in adipocytes, and suggest that regulation of lipolysis by lipin 1 is mediated by PA-dependent modulation of phosphodiesterase 4.