992 resultados para biological screening


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biological machines are active devices that are comprised of cells and other biological components. These functional devices are best suited for physiological environments that support cellular function and survival. Biological machines have the potential to revolutionize the engineering of biomedical devices intended for implantation, where the human body can provide the required physiological environment. For engineering such cell-based machines, bio-inspired design can serve as a guiding platform as it provides functionally proven designs that are attainable by living cells. In the present work, a systematic approach was used to tissue engineer one such machine by exclusively using biological building blocks and by employing a bio-inspired design. Valveless impedance pumps were constructed based on the working principles of the embryonic vertebrate heart and by using cells and tissue derived from rats. The function of these tissue-engineered muscular pumps was characterized by exploring their spatiotemporal and flow behavior in order to better understand the capabilities and limitations of cells when used as the engines of biological machines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heparin has been used as an anticoagulant drug for more than 70 years. The global distribution of contaminated heparin in 2007, which resulted in adverse clinical effects and over 100 deaths, emphasizes the necessity for safer alternatives to animal-sourced heparin. The structural complexity and heterogeneity of animal-sourced heparin not only impedes safe access to these biologically active molecules, but also hinders investigations on the significance of structural constituents at a molecular level. Efficient methods for preparing new synthetic heparins with targeted biological activity are necessary not only to ensure clinical safety, but to optimize derivative design to minimize potential side effects. Low molecular weight heparins have become a reliable alternative to heparin, due to their predictable dosages, long half-lives, and reduced side effects. However, heparin oligosaccharide synthesis is a challenging endeavor due to the necessity for complex protecting group manipulation and stereoselective glycosidic linkage chemistry, which often result in lengthy synthetic routes and low yields. Recently, chemoenzymatic syntheses have produced targeted ultralow molecular weight heparins with high-efficiency, but continue to be restricted by the substrate specificities of enzymes.

To address the need for access to homogeneous, complex glycosaminoglycan structures, we have synthesized novel heparan sulfate glycopolymers with well-defined carbohydrate structures and tunable chain length through ring-opening metathesis polymerization chemistry. These polymers recapitulate the key features of anticoagulant heparan sulfate by displaying the sulfation pattern responsible for heparin’s anticoagulant activity. The use of polymerization chemistry greatly simplifies the synthesis of complex glycosaminoglycan structures, providing a facile method to generate homogeneous macromolecules with tunable biological and chemical properties. Through the use of in vitro chromogenic substrate assays and ex vivo clotting assays, we found that the HS glycopolymers exhibited anticoagulant activity in a sulfation pattern and length-dependent manner. Compared to heparin standards, our short polymers did not display any activity. However, our longer polymers were able to incorporate in vitro and ex vivo characteristics of both low-molecular-weight heparin derivatives and heparin, displaying hybrid anticoagulant properties. These studies emphasize the significance of sulfation pattern specificity in specific carbohydrate-protein interactions, and demonstrate the effectiveness of multivalent molecules in recapitulating the activity of natural polysaccharides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical microscopy is an essential tool in biological science and one of the gold standards for medical examinations. Miniaturization of microscopes can be a crucial stepping stone towards realizing compact, cost-effective and portable platforms for biomedical research and healthcare. This thesis reports on implementations of bright-field and fluorescence chip-scale microscopes for a variety of biological imaging applications. The term “chip-scale microscopy” refers to lensless imaging techniques realized in the form of mass-producible semiconductor devices, which transforms the fundamental design of optical microscopes.

Our strategy for chip-scale microscopy involves utilization of low-cost Complementary metal Oxide Semiconductor (CMOS) image sensors, computational image processing and micro-fabricated structural components. First, the sub-pixel resolving optofluidic microscope (SROFM), will be presented, which combines microfluidics and pixel super-resolution image reconstruction to perform high-throughput imaging of fluidic samples, such as blood cells. We discuss design parameters and construction of the device, as well as the resulting images and the resolution of the device, which was 0.66 µm at the highest acuity. The potential applications of SROFM for clinical diagnosis of malaria in the resource-limited settings is discussed.

Next, the implementations of ePetri, a self-imaging Petri dish platform with microscopy resolution, are presented. Here, we simply place the sample of interest on the surface of the image sensor and capture the direct shadow images under the illumination. By taking advantage of the inherent motion of the microorganisms, we achieve high resolution (~1 µm) imaging and long term culture of motile microorganisms over ultra large field-of-view (5.7 mm × 4.4 mm) in a specialized ePetri platform. We apply the pixel super-resolution reconstruction to a set of low-resolution shadow images of the microorganisms as they move across the sensing area of an image sensor chip and render an improved resolution image. We perform longitudinal study of Euglena gracilis cultured in an ePetri platform and image based analysis on the motion and morphology of the cells. The ePetri device for imaging non-motile cells are also demonstrated, by using the sweeping illumination of a light emitting diode (LED) matrix for pixel super-resolution reconstruction of sub-pixel shifted shadow images. Using this prototype device, we demonstrate the detection of waterborne parasites for the effective diagnosis of enteric parasite infection in resource-limited settings.

Then, we demonstrate the adaptation of a smartphone’s camera to function as a compact lensless microscope, which uses ambient illumination as its light source and does not require the incorporation of a dedicated light source. The method is also based on the image reconstruction with sweeping illumination technique, where the sequence of images are captured while the user is manually tilting the device around any ambient light source, such as the sun or a lamp. Image acquisition and reconstruction is performed on the device using a custom-built android application, constructing a stand-alone imaging device for field applications. We discuss the construction of the device using a commercial smartphone and demonstrate the imaging capabilities of our system.

Finally, we report on the implementation of fluorescence chip-scale microscope, based on a silo-filter structure fabricated on the pixel array of a CMOS image sensor. The extruded pixel design with metal walls between neighboring pixels successfully guides fluorescence emission through the thick absorptive filter to the photodiode layer of a pixel. Our silo-filter CMOS image sensor prototype achieves 13-µm resolution for fluorescence imaging over a wide field-of-view (4.8 mm × 4.4 mm). Here, we demonstrate bright-field and fluorescence longitudinal imaging of living cells in a compact, low-cost configuration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the advent of well-defined ruthenium olefin metathesis catalysts that are highly active and stable to a variety of functional groups, the synthesis of complex organic molecules and polymers is now possible; this is reviewed in Chapter 1. The majority of the rest of this thesis describes the application of these catalysts towards the synthesis of novel polymers that may be useful in biological applications and investigations into their efficacy.

A method was developed to produce polyethers by metathesis, and this is described in Chapters 2 and 3. An unsaturated 12-crown-4 analog was made by template- directed ring-closing metathesis (RCM) and utilized as a monomer for the synthesis of unsaturated polyethers by ring-opening metathesis polymerization (ROMP). The yields were high and a range of molecular weights was accessible. In a similar manner, substituted polyethers with various backbones were synthesized: polymers with benzo groups along the backbone and various concentrations of amino acids were prepared. The results from in vitro toxicity tests of the unsubstituted polyethers are considered.

The conditions necessary to synthesize polynorbornenes with pendent bioactive peptides were explored as illustrated in Chapter 4. First, the polymerization of various norbornenyl monomers substituted with glycine, alanine or penta(ethylene glycol) is described. Then, the syntheses of polymers substituted with peptides GRGD and SRN, components of a cell binding domain of fibronectin, using newly developed ruthenium initiators are discussed.

In Chapter 5, the syntheses of homopolymers and a copolymer containing GRGDS and PHSRN, the more active forms of the peptides, are described. The ability of the polymers to inhibit human dermal fibroblast cell adhesion to fibronectin was assayed using an in vitro competitive inhibition assay, and the results are discussed. It was discovered that the copoymer substituted with both GRGDS and PHSR peptides was more active than both the GRGDS-containing homopolymer and the GRGDS free peptide.

Historically, one of the drawbacks to using metathesis is the removal of the residual ruthenium at the completion of the reaction. Chapter 6 describes a method where the water soluble tris(hydroxymethyl)phosphine is utilized to facilitate the removal of residual ruthenium from RCM reaction products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nature has used a variety of protein systems to mediate electron transfer. In this thesis I examine aspects of the control of biological electron transfer by two copper proteins that act as natural electron carriers.

In the first study, I have made a mutation to one of the ligand residues in the azurin blue copper center, methionine 121 changed to a glutamic acid. Studies of intramolecular electron transfer rates from that mutated center to covalently attached ruthenium complexes indicate that the weak axial methionine ligand is important not only for tuning the reduction potential of the blue copper site but also for maintaining the low reorganization energy that is important for fast electron transfer at long distances.

In the second study, I begin to examine the reorganization energy of the purple copper center in the CuA domain of subunit II of cytochrome c oxidase. In this copper center, the unpaired electron is delocalized over the entire binuclear site. Because long-range electron transfer into and out of this center occurs over long distances with very small driving forces, the reorganization energy of the CuA center has been predicted to be extremely low. I describe a strategy for measuring this reorganization energy starting with the construction of a series of mutations introducing surface histidines. These histidines can then be labeled with a series of ruthenium compounds that differ primarily in their reduction potentials. The electron transfer rates to these ruthenium compounds can then be used to determine the reorganization energy of the CuA site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation describes efforts to model biological active sites with small molecule clusters. The approach used took advantage of a multinucleating ligand to control the structure and nuclearity of the product complexes, allowing the study of many different homo- and heterometallic clusters. Chapter 2 describes the synthesis of the multinucleating hexapyridyl trialkoxy ligand used throughout this thesis and the synthesis of trinuclear first row transition metal complexes supported by this framework, with an emphasis on tricopper systems as models of biological multicopper oxidases. The magnetic susceptibility of these complexes were studied, and a linear relation was found between the Cu-O(alkoxide)-Cu angles and the antiferromagnetic coupling between copper centers. The triiron(II) and trizinc(II) complexes of the ligand were also isolated and structurally characterized.

Chapter 3 describes the synthesis of a series of heterometallic tetranuclear manganese dioxido complexes with various incorporated apical redox-inactive metal cations (M = Na+, Ca2+, Sr2+, Zn2+, Y3+). Chapter 4 presents the synthesis of heterometallic trimanganese(IV) tetraoxido complexes structurally related to the CaMn3 subsite of the oxygen-evolving complex (OEC) of Photosystem II. The reduction potentials of these complexes were studied, and it was found that each isostructural series displays a linear correlation between the reduction potentials and the Lewis acidities of the incorporated redox-inactive metals. The slopes of the plotted lines for both the dioxido and tetraoxido clusters are the same, suggesting a more general relationship between the electrochemical potentials of heterometallic manganese oxido clusters and their “spectator” cations. Additionally, these studies suggest that Ca2+ plays a role in modulating the redox potential of the OEC for water oxidation.

Chapter 5 presents studies of the effects of the redox-inactive metals on the reactivities of the heterometallic manganese complexes discussed in Chapters 3 and 4. Oxygen atom transfer from the clusters to phosphines is studied; although the reactivity is kinetically controlled in the tetraoxido clusters, the dioxido clusters with more Lewis acidic metal ions (Y3+ vs. Ca2+) appear to be more reactive. Investigations of hydrogen atom transfer and electron transfer rates are also discussed.

Appendix A describes the synthesis, and metallation reactions of a new dinucleating bis(N-heterocyclic carbene)ligand framework. Dicopper(I) and dicobalt(II) complexes of this ligand were prepared and structurally characterized. A dinickel(I) dichloride complex was synthesized, reduced, and found to activate carbon dioxide. Appendix B describes preliminary efforts to desymmetrize the manganese oxido clusters via functionalization of the basal multinucleating ligand used in the preceding sections of this dissertation. Finally, Appendix C presents some partially characterized side products and unexpected structures that were isolated throughout the course of these studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deficiencies in the mismatch repair (MMR) pathway are associated with several types of cancers, as well as resistance to commonly used chemotherapeutics. Rhodium metalloinsertors have been found to bind DNA mismatches with high affinity and specificity in vitro, and also exhibit cell-selective cytotoxicity, targeting MMR-deficient cells over MMR-proficient cells.

Here we examine the biological fate of rhodium metalloinsertors bearing dipyridylamine ancillary ligands. These complexes are shown to exhibit accelerated cellular uptake which permits the observation of various cellular responses, including disruption of the cell cycle and induction of necrosis, which occur preferentially in the MMR-deficient cell line. These cellular responses provide insight into the mechanisms underlying the selective activity of this novel class of targeted anti-cancer agents.

In addition, ten distinct metalloinsertors with varying lipophilicities are synthesized and their mismatch binding affinities and biological activities studied. While they are found to have similar binding affinities, their cell-selective antiproliferative and cytotoxic activities vary significantly. Inductively coupled plasma mass spectrometry (ICP-MS) experiments show that all of these metalloinsertors localize in the nucleus at sufficient concentrations for binding to DNA mismatches. Furthermore, metalloinsertors with high rhodium localization in the mitochondria show toxicity that is not selective for MMR-deficient cells. This work supports the notion that specific targeting of the metalloinsertors to nuclear DNA gives rise to their cytotoxic and antiproliferative activities that are selective for cells deficient in MMR.

To explore further the basis of the unique selectivity of the metlloinsertors in targeting MMR-deficient cells, experiments were conducted using engineered NCI-H23 lung adenocarcinoma cells that contain a doxycycline-inducible shRNA which suppresses the expression of the MMR gene MLH1. Here we use this new cell line to further validate rhodium metalloinsertors as compounds capable of differentially inhibiting the proliferation of MMR-deficient cancer cells over isogenic MMR-proficient cells. General DNA damaging agents, such as cisplatin and etoposide, in contrast, are less effective in the induced cell line defective in MMR.

Finally, we describe a new subclass of metalloinsertors with enhanced potency and selectivity, in which the complexes show Rh-O coordination. In particular, it has been found that both Δ and Λ enantiomers of [Rh(chrysi)(phen)(DPE)]2+ bind to DNA with similar affinities, suggesting a possible different binding conformation than previous metalloinsertors. Remarkably, all members of this new family of compounds have significantly increased potency in a range of cellular assays; indeed, all are more potent than the FDA-approved anticancer drugs cisplatin and MNNG. Moreover, these activities are coupled with high levels of selectivity for MMR-deficient cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Apart from a couple of early papers in the 1600s, the development of freshwater biology as a science in Mexico began in the last century. Taxonomic studies were made especially on algae, aquatic insects, crustaceans, annelid worms and aquatic plants. The great impetus acquired by limnology in Europe and America in the first half of the 20th Century stimulated foreign researchers to come and work in Mexico. During this period the Instituto de Biologia, belonging to the Universidad Nacional Autonoma de Mexico, was created in 1930. The Institute had a section of Hydrobiology that contributed to the limnological characterization of Mexican lakes and ponds. In 1962, the Instituto Nacional de Investigaciones Biologico-Pesqueras was created to bring together the work of several institutes working on the native ichthyofauna, the restocking of reservoirs, and aquaculture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 1990, "BICER" or the Baikal International Centre for Ecological Research was created to foster collaborative research on Lake Baikal. The British effort in BICER was initiated and is administered by the Royal Society, London. Much of the on-going research effort is now focussed on environmental change, as there is increasing concern about recent changes in the lake's unique ecosystem that could be linked with the effects of water pollution from catchment effluents. Monitoring studies of the phytoplankton in Lake Baikal's southern basin indicate that several species have increased in abundance since the mid-70's. Diatoms in Lake Baikal sediments are also being studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 1937 the Development Commission provided an annual grant to the Freshwater Biological Association to pay for a director and secretary. The author moved to the Lake District in the same year, and at that time T.T. Macan was working on invertebrates; K.R. Allen on fish; C.H. Mortimer on chemistry and physics of the aquatic environment, and Marie Rosenberg on phytoplankton. They were backed by George Thompson as laboratory assistant and Rosa Bullen as secretary. The work of the Association continued and expanded throughout the Second World War with some far-reached discoveries made. For example, the recovery of lake sediment cores and the examination of diatom remains, so starting the discipline of archaeo-limnology. Also, a hydrological survey of the Windermere catchment area found significant traces of sulphuric acid in rain gauges. This was more than 30 years before "acid rain" became fashionable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work quantifies the nature of delays in genetic regulatory networks and their effect on system dynamics. It is known that a time lag can emerge from a sequence of biochemical reactions. Applying this modeling framework to the protein production processes, delay distributions are derived in a stochastic (probability density function) and deterministic setting (impulse function), whilst being shown to be equivalent under different assumptions. The dependence of the distribution properties on rate constants, gene length, and time-varying temperatures is investigated. Overall, the distribution of the delay in the context of protein production processes is shown to be highly dependent on the size of the genes and mRNA strands as well as the reaction rates. Results suggest longer genes have delay distributions with a smaller relative variance, and hence, less uncertainty in the completion times, however, they lead to larger delays. On the other hand large uncertainties may actually play a positive role, as broader distributions can lead to larger stability regions when this formalization of the protein production delays is incorporated into a feedback system.

Furthermore, evidence suggests that delays may play a role as an explicit design into existing controlling mechanisms. Accordingly, the reccurring dual-feedback motif is also investigated with delays incorporated into the feedback channels. The dual-delayed feedback is shown to have stabilizing effects through a control theoretic approach. Lastly, a distributed delay based controller design method is proposed as a potential design tool. In a preliminary study, the dual-delayed feedback system re-emerges as an effective controller design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The year 2004 marked the 75th anniversary of the Freshwater Biological Association. The author reflects the history of the Association focusing on the main events of the last 25 years since 1979.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article introduces a new listing of published scientific contributions from the Freshwater Biological Association (FBA) and its later Research Council associates – the Institute of Freshwater Ecology (1989–2000) and the Centre for Ecology and Hydrology (2000+). The period 1929–2006 is covered. The authors offer also information on specific features of the listing; also an outline of influences that underlay the research, and its scientific scope.