999 resultados para bar resolution
Resumo:
A new stir bar sorptive extraction (SBSE) technique coupled with HPLC-UV method for quantification of diclofenac in pharmaceutical formulations has been developed and validated as a proof of concept study. Commercially available polydimethylsiloxane stir bars (Twister (TM)) were used for method development and SBSE extraction (pH, phase ratio, stirring speed, temperature, ionic strength and time) and liquid desorption (solvents, desorption method, stirring time etc) procedures were optimised. The method was validated as per ICH guidelines and was successfully applied for the estimation of diclofenac from three liquid formulations viz. Voltarol (R) Optha single dose eye drops, Voltarol (R) Ophtha multidose eye drops and Voltarol (R) ampoules. The developed method was found to be linear (r=0.9999) over 100-2000 ng/ml concentration range with acceptable accuracy and precision (tested over three QC concentrations). The SBSE extraction recovery of the diclofenac was found to be 70% and the LOD and LOQ of the validated method were found to be 16.06 and 48.68 ng/ml, respectively. Furthermore, a forced degradation study of a diclofenac formulation leading to the formation of structurally similar cyclic impurity (indolinone) was carried out. The developed extraction method showed comparable results to that of the reference method, i.e. method was capable of selectively extracting the indolinone and diclofenac from the liquid matrix. Data on inter and intra stir bar accuracy and precision further confirmed robustness of the method, supporting the multiple re-use of the stir bars. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The imaging properties of a phase conjugating lens operating in the far field zone of the imaged source and augmented with scatterers positioned in the source near field region are theoretically studied in this paper. The phase conjugating lens consists of a double sided 2D assembly of straight wire elements, individually interconnected through phase conjugation operators. The scattering elements are straight wire segments which are loaded with lumped impedance loads at their centers. We analytically and numerically analyze all stages of the imaging process; i) evanescent-to-propagating spectrum conversion; ii) focusing properties of infinite or finite sized phase conjugating lens; iii) source reconstruction upon propagating-to-evanescent spectrum conversion. We show that the resolution that can be achieved depends critically on the separation distance between the imaged source and scattering arrangement, as well as on the topology of the scatterers used. Imaged focal widths of up to one-seventh wavelength are demonstrated. The results obtained indicate the possibility of such an arrangement as a potential practical means for realising using conventional materials devices for fine feature extraction by electromagnetic lensing at distances remotely located from the source objects under investigation
Resumo:
We dated a continuous, ~22-m long sediment sequence from Lake Challa (Mt. Kilimanjaro area, Kenya/Tanzania) to produce a solid chronological framework for multi-proxy reconstructions of climate and environmental change in equatorial East Africa over the past 25,000 years. The age model is based on a total of 168 AMS 14C dates on bulk-organic matter, combined with a 210Pb chronology for recent sediments and corrected for a variable old-carbon age offset. This offset was estimated by i) pairing bulk-organic 14C dates with either 210Pb-derived time markers or 14C dates on grass charcoal, and ii) wiggle-matching high-density series of bulk-organic 14C dates. Variation in the old-carbon age offset through time is relatively modest, ranging from ~450 yr during glacial and late glacial time to ~200 yr during the early and mid-Holocene, and increasing again to ~250 yr today. The screened and corrected 14C dates were calibrated sequentially, statistically constrained by their stratigraphical order. As a result their constrained calendar-age distributions are much narrower, and the calibrated dates more precise, than if each 14C date had been calibrated on its own. The smooth-spline age-depth model has 95% age uncertainty ranges of ~50–230 yr during the Holocene and ~250–550 yr in the glacial section of the record. The d13C values of paired bulk-organic and grass-charcoal samples, and additional 14C dating on selected turbidite horizons, indicates that the old-carbon age offset in Lake Challa is caused by a variable contribution of old terrestrial organic matter eroded from soils, and controlled mainly by changes in vegetation cover within the crater basin.
Resumo:
The hypoxia-inducible factor (HIF) is a key regulator of the transcriptional response to hypoxia. While the mechanism underpinning HIF activation is well understood, little is known about its resolution. Both the protein and the mRNA levels of HIF-1a (but not HIF-2a) were decreased in intestinal epithelial cells exposed to prolonged hypoxia. Coincident with this, microRNA (miRNA) array analysis revealed multiple hypoxia-inducible miRNAs. Among these was miRNA-155 (miR-155), which is predicted to target HIF-1a mRNA. We confirmed the hypoxic upregulation of miR-155 in cultured cells and intestinal tissue from mice exposed to hypoxia. Furthermore, a role for HIF-1a in the induction of miR-155 in hypoxia was suggested by the identification of hypoxia response elements in the miR-155 promoter and confirmed experimentally. Application of miR-155 decreased the HIF-1a mRNA, protein, and transcriptional activity in hypoxia, and neutralization of endogenous miR-155 reversed the resolution of HIF-1a stabilization and activity. Based on these data and a mathematical model of HIF-1a suppression by miR-155, we propose that miR-155 induction contributes to an isoform-specific negative-feedback loop for the resolution of HIF-1a activity in cells exposed to prolonged hypoxia, leading to oscillatory behavior of HIF-1a-dependent transcription.
Resumo:
Aim: To characterize and map temporal changes in the biological and clinical phenotype during a 21-day experimental gingivitis study. Materials and Methods: Experimental gingivitis was induced over 21 days in healthy human volunteers (n = 56), after which normal brushing was resumed (resolution phase). Gingival and plaque indices were assessed. Gingival crevicular fluid was collected from four paired test and contra-lateral control sites in each volunteer during induction (Days 0, 7, 14 and 21) and resolution (Days 28 and 42) of experimental gingivitis. Fluid volumes were measured and a single analyte was quantified from each site-specific, 30s sample. Data were evaluated by analysis of repeated measurements and paired sample tests. Results: Clinical indices and gingival crevicular fluid volumes at test sites increased from Day 0, peaking at Day 21 (test/control differences all p