954 resultados para automated detection
Resumo:
Introduction Presently, the severity of obstructive sleep apnea (OSA) is estimated based on the apnea-hypopnea index (AHI). Unfortunately, AHI does not provide information on the severity of individual obstruction events. Previously, the severity of individual obstruction events has been suggested to be related to the outcome of the disease. In this study, we incorporate this information into AHI and test whether this novel approach would aid in discriminating patients with the highest risk. We hypothesize that the introduced adjusted AHI parameter provides a valuable supplement to AHI in the diagnosis of the severity of OSA. Methods This hypothesis was tested by means of retrospective follow-up (mean ± sd follow-up time 198.2 ± 24.7 months) of 1,068 men originally referred to night polygraphy due to suspected OSA. After exclusion of the 264 patients using CPAP, the remaining 804 patients were divided into normal (AHI < 5) and OSA (AHI ≥ 5) categories based on conventional AHI and adjusted AHI. For a more detailed analysis, the patients were divided into normal, mild, moderate, and severe OSA categories based on conventional AHI and adjusted AHI. Subsequently, the mortality and cardiovascular morbidity in these groups were determined. Results Use of the severity of individual obstruction events for adjustment of AHI led to a significant rearrangement of patients between severity categories. Due to this rearrangement, the number of deceased patients diagnosed to have OSA was increased when adjusted AHI was used as the diagnostic index. Importantly, risk ratios of all-cause mortality and cardiovascular morbidity were higher in moderate and severe OSA groups formed based on the adjusted AHI parameter than in those formed based on conventional AHI. Conclusions The adjusted AHI parameter was found to give valuable supplementary information to AHI and to potentially improve the recognition of OSA patients with the highest risk of mortality or cardiovascular morbidity.
Resumo:
Changes to the redox status of biological systems have been implicated in the pathogenesis of a wide variety of disorders including cancer, Ischemia-reperfusion (I/R) injury and neurodegeneration. In times of metabolic stress e.g. ischaemia/reperfusion, reactive oxygen species (ROS) production overwhelms the intrinsic antioxidant capacity of the cell, damaging vital cellular components. The ability to quantify ROS changes in vivo, is therefore essential to understanding their biological role. Here we evaluate the suitability of a novel reversible profluorescent probe containing a redox-sensitive nitroxide moiety (methyl ester tetraethylrhodamine nitroxide, ME-TRN), as an in vivo, real-time reporter of retinal oxidative status. The reversible nature of the probe's response offers the unique advantage of being able to monitor redox changes in both oxidizing and reducing directions in real time. After intravitreal administration of the ME-TRN probe, we induced ROS production in rat retina using an established model of complete, acute retinal ischaemia followed by reperfusion. After restoration of blood flow, retinas were imaged using a Micron III rodent fundus fluorescence imaging system, to quantify the redox-response of the probe. Fluorescent intensity declined during the first 60 min of reperfusion. The ROS-induced change in probe fluorescence was ameliorated with the retinal antioxidant, lutein. Fluorescence intensity in non-Ischemia eyes did not change significantly. This new probe and imaging technology provide a reversible and real-time response to oxidative changes and may allow the in vivo testing of antioxidant therapies of potential benefit to a range of diseases linked to oxidative stress
Resumo:
Debates on gene patents have necessitated the analysis of patents that disclose and reference human sequences. In this study, we built an automated classifier that assigns sequences to one of nine predefined categories according to their functional roles in patent claims by applying natural language processing and supervised learning techniques. To improve its correctness, we experimented with various feature mappings, resulting in the maximal accuracy of 79%.
Resumo:
A novel electrochemical biosensor, DNA/hemin/nafion–graphene/GCE, was constructed for the analysis of the benzo(a)pyrene PAH, which can produce DNA damage induced by a benzo(a)pyrene (BaP) enzyme-catalytic product. This biosensor was assembled layer-by-layer, and was characterized with the use of cyclic voltammetry, electrochemical impedance spectroscopy (EIS) and atomic force microscopy. Ultimately, it was demonstrated that the hemin/nafion–graphene/GCE was a viable platform for the immobilization of DNA. This DNA biosensor was treated separately in benzo(a)pyrene, hydrogen peroxide (H2O2) and in their mixture, respectively, and differential pulse voltammetry (DPV) analysis showed that an oxidation peak was apparent after the electrode was immersed in H2O2. Such experiments indicated that in the presence of H2O2, hemin could mimic cytochrome P450 to metabolize benzo(a)pyrene, and a voltammogram of its metabolite was recorded. The DNA damage induced by this metabolite was also detected by electrochemical impedance and ultraviolet spectroscopy. Finally, a novel, indirect DPV analytical method for BaP in aqueous solution was developed based on the linear metabolite versus BaP concentration plot; this method provided a new, indirect, quantitative estimate of DNA damage.
Resumo:
Dengue has been a major public health concern in Australia since it re-emerged in Queensland in 1992-1993. This study explored spatio-temporal distribution and clustering of locally-acquired dengue cases in Queensland State, Australia and identified target areas for effective interventions. A computerised locally-acquired dengue case dataset was collected from Queensland Health for Queensland from 1993 to 2012. Descriptive spatial and temporal analyses were conducted using geographic information system tools and geostatistical techniques. Dengue hot spots were detected using SatScan method. Descriptive spatial analysis showed that a total of 2,398 locally-acquired dengue cases were recorded in central and northern regions of tropical Queensland. A seasonal pattern was observed with most of the cases occurring in autumn. Spatial and temporal variation of dengue cases was observed in the geographic areas affected by dengue over time. Tropical areas are potential high-risk areas for mosquito-borne diseases such as dengue. This study demonstrated that the locally-acquired dengue cases have exhibited a spatial and temporal variation over the past twenty years in tropical Queensland, Australia. There is a clear evidence for the existence of statistically significant clusters of dengue and these clusters varied over time. These findings enabled us to detect and target dengue clusters suggesting that the use of geospatial information can assist the health authority in planning dengue control activities and it would allow for better design and implementation of dengue management programs.
Resumo:
Rolling-element bearing failures are the most frequent problems in rotating machinery, which can be catastrophic and cause major downtime. Hence, providing advance failure warning and precise fault detection in such components are pivotal and cost-effective. The vast majority of past research has focused on signal processing and spectral analysis for fault diagnostics in rotating components. In this study, a data mining approach using a machine learning technique called anomaly detection (AD) is presented. This method employs classification techniques to discriminate between defect examples. Two features, kurtosis and Non-Gaussianity Score (NGS), are extracted to develop anomaly detection algorithms. The performance of the developed algorithms was examined through real data from a test to failure bearing. Finally, the application of anomaly detection is compared with one of the popular methods called Support Vector Machine (SVM) to investigate the sensitivity and accuracy of this approach and its ability to detect the anomalies in early stages.
Resumo:
Understanding the complex nature of diseased tissue in vivo requires development of more advanced nanomedicines, where synthesis of multifunctional polymers combines imaging multimodality with a biocompatible, tunable, and functional nanomaterial carrier. Here we describe the development of polymeric nanoparticles for multimodal imaging of disease states in vivo. The nanoparticle design utilizes the abundant functionality and tunable physicochemical properties of synthetically robust polymeric systems to facilitate targeted imaging of tumors in mice. For the first time, high-resolution 19F/1H magnetic resonance imaging is combined with sensitive and versatile fluorescence imaging in a polymeric material for in vivo detection of tumors. We highlight how control over the chemistry during synthesis allows manipulation of nanoparticle size and function and can lead to very high targeting efficiency to B16 melanoma cells, both in vitro and in vivo. Importantly, the combination of imaging modalities within a polymeric nanoparticle provides information on the tumor mass across various size scales in vivo, from millimeters down to tens of micrometers.
Resumo:
This thesis presents the development of a rapid, sensitive and reproducible spectroscopic method for the detection of TNT in forensic and environmental applications. Simple nano sensors prepared by cost effective methods were utilized as sensitive platforms for the detection of TNT by surface enhanced Raman spectroscopy. The optimization of the substrate and the careful selection of a suitable recognition molecule contributed to the significant improvements of sensitive and selective targeting over current detection methods. The work presented in this thesis paves the way for effective detection and monitoring of explosives residues in law enforcement and environmental health applications.
Resumo:
A double antibody sandwich enzyme linked immunosorbent assay (ELISA) was developed to detect Echis carinatus venom in various organs (brain, heart, lungs, liver, spleen and kidneys) as well as tissue at the site of injection of mice, at various time intervals (1, 6, 12, 18, 24 h and 12 h intervals up to 72 h) after death. The assay could detect E. carinatus venom levels up to 2.5 ng/ml of tissue homogenate and the venom was detected up to 72 h after death. A highly sensitive and species-specific avidin-biotin microtitre ELISA was also developed to detect venoms of four medically important Indian snakes (Bungarus caeruleus, Naja naja, E. carinatus and Daboia russelli russelli) in autopsy specimens of human victims of snake bite. The assay could detect venom levels as low as 100 pg/ml of tissue homogenate. Venoms were detected in brain, heart, lungs, liver, spleen, kidneys, tissue at the bite area and postmortem blood. In all 12 human victim cadavers tested the culprit species were identified. As observed in mice, tissue at the site of bite area showed the highest concentration of venom and the brain showed the least. Moderate amounts of venoms were found in liver, spleen, kidneys, heart and lungs. Development of a simple, rapid and species-specific diagnostic kit based on this ELISA technique useful to clinicians is discussed.
Resumo:
Purpose The detection of circulating tumor cells (CTCs) provides important prognostic information in men with metastatic prostate cancer. We aim to determine the rate of detection of CTCs in patients with high-risk non-metastatic prostate cancer using the CellSearch® method. Method Samples of peripheral blood (7.5 mL) were drawn from 36 men with newly diagnosed high-risk non-metastatic prostate cancer, prior to any initiation of therapy and analyzed for CTCs using the CellSearch® method. Results The median age was 70 years, median PSA was 14.1, and the median Gleason score was 9. The median 5-year risk of progression of disease using a validated nomogram was 39 %. Five out of 36 patients (14 %, 95 % CI 5–30 %) had CTCs detected in their circulation. Four patients had only 1 CTC per 7.5 mL of blood detected. One patient had 3 CTCs per 7.5 mL of blood detected, which included a circulating tumor microemboli. Both on univariate analysis and multivariate analysis, there were no correlations found between CTC positivity and the classic prognostic factors including PSA, Gleason score, T-stage and age. Conclusion This study demonstrates that patients with high-risk, non-metastatic prostate cancer present infrequently with small number of CTCs in peripheral blood. This finding is consistent with the limited literature available in this setting. Other CTC isolation and detection technologies with improved sensitivity and specificity may enable detection of CTCs with mesenchymal phenotypes, although none as yet have been validated for clinical use. Newer assays are emerging for detection of new putative biomarkers for prostate cancer. Correlation of disease control outcomes with CTC detection will be important.
Resumo:
This paper presents a system to analyze long field recordings with low signal-to-noise ratio (SNR) for bio-acoustic monitoring. A method based on spectral peak track, Shannon entropy, harmonic structure and oscillation structure is proposed to automatically detect anuran (frog) calling activity. Gaussian mixture model (GMM) is introduced for modelling those features. Four anuran species widespread in Queensland, Australia, are selected to evaluate the proposed system. A visualization method based on extracted indices is employed for detection of anuran calling activity which achieves high accuracy.
Resumo:
A number of hurdles must be overcome in order to integrate unmanned aircraft into civilian airspace for routine operations. The ability of the aircraft to land safely in an emergency is essential to reduce the risk to people, infrastructure and aircraft. To date, few field-demonstrated systems have been presented that show online re-planning and repeatability from failure to touchdown. This paper presents the development of the Guidance, Navigation and Control (GNC) component of an Automated Emergency Landing System (AELS) intended to address this gap, suited to a variety of fixed-wing aircraft. Field-tested on both a fixed-wing UAV and Cessna 172R during repeated emergency landing experiments, a trochoid-based path planner computes feasible trajectories and a simplified control system executes the required manoeuvres to guide the aircraft towards touchdown on a predefined landing site. This is achieved in zero-thrust conditions with engine forced to idle to simulate failure. During an autonomous landing, the controller uses airspeed, inertial and GPS data to track motion and maintains essential flight parameters to guarantee flyability, while the planner monitors glide ratio and re-plans to ensure approach at correct altitude. Simulations show reliability of the system in a variety of wind conditions and its repeated ability to land within the boundary of a predefined landing site. Results from field-tests for the two aircraft demonstrate the effectiveness of the proposed GNC system in live operation. Results show that the system is capable of guiding the aircraft to close proximity of a predefined keyhole in nearly 100% of cases.
Resumo:
Experiments in spintronics necessarily involve the detection of spin polarization. The sensitivity of this detection becomes an important factor to consider when extending the low temperature studies on semiconductor spintronic devices to room temperature, where the spin signal is weaker. In pump-probe experiments, which optically inject and detect spins, the sensitivity is often improved by using a photoelastic modulator (PEM) for lock-in detection. However, spurious signals can arise if diode lasers are used as optical sources in such experiments, along with a PEM. In this work, we eliminated the spurious electromagnetic coupling of the PEM onto the probe diode laser, by the double modulation technique. We also developed a test for spurious modulated interference in the pump-probe signal, due to the PEM. Besides, an order of magnitude enhancement in the sensitivity of detection of spin polarization by Kerr rotation, to 3x10(-8) rad was obtained by using the concept of Allan variance to optimally average the time series data over a period of 416 s. With these improvements, we are able to experimentally demonstrate at room temperature, photoinduced steady-state spin polarization in bulk GaAs. Thus, the advances reported here facilitate the use of diode lasers with a PEM for sensitive pump-probe experiments. They also constitute a step toward detection of spin-injection in Si at room temperature.
Resumo:
Early detection of melanoma skin cancer, prior to metastatic spread, is critical to improve survival outcomes in patients. This study identified a melanoma-related panel of blood markers that can detect the presence of melanoma with high sensitivity and accuracy which is superior to currently used markers for melanoma progression, recurrence, and survival. Overall, the findings discussed in this thesis may lead to more precise measurement of disease progression allowing for better treatments and an increase in overall survival.