978 resultados para atmospheric discharges


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The frequency of large-scale heavy precipitation events in the European Alps is expected to undergo substantial changes with current climate change. Hence, knowledge about the past natural variability of floods caused by heavy precipitation constitutes important input for climate projections. We present a comprehensive Holocene (10,000 years) reconstruction of the flood frequency in the Central European Alps combining 15 lacustrine sediment records. These records provide an extensive catalog of flood deposits, which were generated by flood-induced underflows delivering terrestrial material to the lake floors. The multi-archive approach allows suppressing local weather patterns, such as thunderstorms, from the obtained climate signal. We reconstructed mainly late spring to fall events since ice cover and precipitation in form of snow in winter at high-altitude study sites do inhibit the generation of flood layers. We found that flood frequency was higher during cool periods, coinciding with lows in solar activity. In addition, flood occurrence shows periodicities that are also observed in reconstructions of solar activity from C-14 and Be-10 records (2500-3000, 900-1200, as well as of about 710, 500, 350, 208 (Suess cycle), 150, 104 and 87 (Gleissberg cycle) years). As atmospheric mechanism, we propose an expansion/shrinking of the Hadley cell with increasing/decreasing air temperature, causing dry/wet conditions in Central Europe during phases of high/low solar activity. Furthermore, differences between the flood patterns from the Northern Alps and the Southern Alps indicate changes in North Atlantic circulation. Enhanced flood occurrence in the South compared to the North suggests a pronounced southward position of the Westerlies and/or blocking over the northern North Atlantic, hence resembling a negative NAO state (most distinct from 4.2 to 2.4 kyr BP and during the Little Ice Age). South-Alpine flood activity therefore provides a qualitative record of variations in a paleo-NAO pattern during the Holocene. Additionally, increased South Alpine flood activity contrasts to low precipitation in tropical Central America (Cariaco Basin) on the Holocene and centennial time scale. This observation is consistent with a Holocene southward migration of the Atlantic circulation system, and hence of the ITCZ, driven by decreasing summer insolation in the Northern hemisphere, as well as with shorter-term fluctuations probably driven by solar activity. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we document glacial deposits and reconstruct the glacial history in the Karagöl valley system in the eastern Uludağ in northwestern Turkey based on 42 cosmogenic 10Be exposure ages from boulders and bedrock. Our results suggest the Last Glacial Maximum (LGM) advance prior to 20.4 ± 1.2 ka and at least three re-advances until 18.6 ± 1.2 ka during the global LGM within Marine Isotope Stage-2. In addition, two older advances of unknown age are geomorphologically well constrained, but not dated due to the absence of suitable boulders. Glaciers advanced again two times during the Lateglacial. The older is exposure dated to not later than 15.9 ± 1.1 ka and the younger is attributed to the Younger Dryas (YD) based on field evidence. The timing of the glaciations in the Karagöl valley correlates well with documented archives in the Anatolian and Mediterranean mountains and the Alps. These glacier fluctuations may be explained by the change in the atmospheric circulation pattern during the different phases of North Atlantic Oscillation (NAO) winter indices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atmospheric circulation modes are important concepts in understanding the variability of atmospheric dynamics. Assuming their spatial patterns to be fixed, such modes are often described by simple indices from rather short observational data sets. The increasing length of reanalysis products allows these concepts and assumptions to be scrutinised. Here we investigate the stability of spatial patterns of Northern Hemisphere teleconnections by using the Twentieth Century Reanalysis as well as several control and transient millennium-scale simulations with coupled models. The observed and simulated centre of action of the two major teleconnection patterns, the North Atlantic Oscillation (NAO) and to some extent the Pacific North American (PNA), are not stable in time. The currently observed dipole pattern of the NAO, its centre of action over Iceland and the Azores, split into a north–south dipole pattern in the western Atlantic with a wave train pattern in the eastern part, connecting the British Isles with West Greenland and the eastern Mediterranean during the period 1940–1969 AD. The PNA centres of action over Canada are shifted southwards and over Florida into the Gulf of Mexico during the period 1915–1944 AD. The analysis further shows that shifts in the centres of action of either teleconnection pattern are not related to changes in the external forcing applied in transient simulations of the last millennium. Such shifts in their centres of action are accompanied by changes in the relation of local precipitation and temperature with the overlying atmospheric mode. These findings further undermine the assumption of stationarity between local climate/proxy variability and large-scale dynamics inherent when using proxy-based reconstructions of atmospheric modes, and call for a more robust understanding of atmospheric variability on decadal timescales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tropical explosive volcanism is one of the most important natural factors that significantly impact the climate system and the carbon cycle on annual to multi-decadal time scales. The three largest explosive eruptions in the last 50�years�Agung, El Chichón, and Pinatubo�occurred in spring/summer in conjunction with El Niño events and left distinct negative signals in the observational temperature and CO2 records. However, confounding factors such as seasonal variability and El Niño-Southern Oscillation (ENSO) may obscure the forcing-response relationship. We determine for the first time the extent to which initial conditions, i.e., season and phase of the ENSO, and internal variability influence the coupled climate and carbon cycle response to volcanic forcing and how this affects estimates of the terrestrial and oceanic carbon sinks. Ensemble simulations with the Earth System Model (Climate System Model 1.4-carbon) predict that the atmospheric CO2 response is �60 larger when a volcanic eruption occurs during El Niño and in winter than during La Niña conditions. Our simulations suggest that the Pinatubo eruption contributed 11�±�6 to the 25�Pg terrestrial carbon sink inferred over the decade 1990�1999 and �2�±�1 to the 22�Pg oceanic carbon sink. In contrast to recent claims, trends in the airborne fraction of anthropogenic carbon cannot be detected when accounting for the decadal-scale influence of explosive volcanism and related uncertainties. Our results highlight the importance of considering the role of natural variability in the carbon cycle for interpretation of observations and for data-model intercomparison.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For atmospheric CO2 reconstructions using ice cores, the technique to release the trapped air from the ice samples is essential for the precision and accuracy of the measurements. We present here a new dry extraction technique in combination with a new gas analytical system that together show significant improvements with respect to current systems. Ice samples (3–15 g) are pulverised using a novel centrifugal ice microtome (CIM) by shaving the ice in a cooled vacuum chamber (−27 °C) in which no friction occurs due to the use of magnetic bearings. Both, the shaving principle of the CIM and the use of magnetic bearings have not been applied so far in this field. Shaving the ice samples produces finer ice powder and releases a minimum of 90% of the trapped air compared to 50%–70% when needle crushing is employed. In addition, the friction-free motion with an optimized design to reduce contaminations of the inner surfaces of the device result in a reduced system offset of about 2.0 ppmv compared to 4.9 ppmv. The gas analytical part shows a higher precision than the corresponding part of our previous system by a factor of two, and all processes except the loading and cleaning of the CIM now run automatically. Compared to our previous system, the complete system shows a 3 times better measurement reproducibility of about 1.1 ppmv (1 σ) which is similar to the best reproducibility of other systems applied in this field. With this high reproducibility, no replicate measurements are required anymore for most future measurement campaigns resulting in a possible output of 12–20 measurements per day compared to a maximum of 6 with other systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detailed insight into natural variations of the greenhouse gas nitrous oxide (N2O) in response to changes in the Earth's climate system is provided by new measurements along the ice core of the North Greenland Ice Core Project (NGRIP). The presented record reaches from the early Holocene back into the previous interglacial with a mean time resolution of about 75 years. Between 11 and 120 kyr BP, atmospheric N2O concentrations react substantially to the last glacial-interglacial transition (Termination 1) and millennial time scale climate variations of the last glacial period. For long-lasting Dansgaard/Oeschger (DO) events, the N2O increase precedes Greenland temperature change by several hundred years with an increase rate of about 0.8-1.3 ppbv/century, which accelerates to about 3.8-10.7 ppbv/century at the time of the rapid warming in Greenland. Within each bundle of DO events, the new record further reveals particularly low N2O concentrations at the approximate time of Heinrich events. This suggests that the response of marine and/or terrestrial N2O emissions on a global scale are different for stadials with and without Heinrich events.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reconstruction of the stable carbon isotope evolution in atmospheric CO2 (δ13Catm), as archived in Antarctic ice cores, bears the potential to disentangle the contributions of the different carbon cycle fluxes causing past CO2 variations. Here we present a new record of δ13Catm before, during and after the Marine Isotope Stage 5.5 (155 000 to 105 000 yr BP). The dataset is archived on the data repository PANGEA® (www.pangea.de) under 10.1594/PANGAEA.817041. The record was derived with a well established sublimation method using ice from the EPICA Dome C (EDC) and the Talos Dome ice cores in East Antarctica. We find a 0.4‰ shift to heavier values between the mean δ13Catm level in the Penultimate (~ 140 000 yr BP) and Last Glacial Maximum (~ 22 000 yr BP), which can be explained by either (i) changes in the isotopic composition or (ii) intensity of the carbon input fluxes to the combined ocean/atmosphere carbon reservoir or (iii) by long-term peat buildup. Our isotopic data suggest that the carbon cycle evolution along Termination II and the subsequent interglacial was controlled by essentially the same processes as during the last 24 000 yr, but with different phasing and magnitudes. Furthermore, a 5000 yr lag in the CO2 decline relative to EDC temperatures is confirmed during the glacial inception at the end of MIS5.5 (120 000 yr BP). Based on our isotopic data this lag can be explained by terrestrial carbon release and carbonate compensation.