996 resultados para and Nd isotope ratios
Resumo:
The Santa Eulalia plutonic complex (SEPC) is a late-Variscan granitic body placed in the Ossa-Morena Zone. The host rocks of the complex belong to metamorphic formations from Proterozoic to Lower Paleozoic. The SEPC is a ring massif (ca. 400 km2 area) composed by two main granitic facies with different colours and textures. From the rim to the core, there is (i) a peripheral pink medium- to coarse-grained granite (G0 group) involving large elongated masses of mafic and intermediate rocks, from gabbros to granodiorites (M group), and (ii) a central gray medium-grained granite (G1 group). The mafic to intermediate rocks (M group) are metaluminous and show wide compositions: 3.34–13.51 wt% MgO; 0.70–7.20 ppm Th; 0.84–1.06 (Eu/Eu*)N (Eu* calculated between Sm and Tb); 0.23–0.97 (Nb/Nb*)N (Nb* calculated between Th and La). Although involving the M-type bodies and forming the outer ring, the G0 granites are the most differentiated magmatic rocks of the SEPC, with a transitional character between metaluminous and peraluminous: 0.00–0.62 wt% MgO; 15.00–56.00 ppm Th; and 0.19–0.42 (Eu/Eu*)N ; 0.08–0.19 (Nb/Nb*)N [1][2]. The G1 group is composed by monzonitic granites with a dominant peraluminous character and represents the most homogeneous compositional group of the SEPC: 0.65–1.02 wt% MgO; 13.00–16.95 ppm Th; 0.57–0.70 (Eu/Eu*)N ; 0.14–0.16 (Nb/Nb*)N . According to the SiO2 vs. (Na2O+K2O–CaO) relationships, the M and G1 groups predominantly fall in the calc-alkaline field, while the G0 group is essencially alkali-calcic; on the basis of the SiO2 vs. FeOt/(FeOt+MgO) correlation, SEPC should be considered as a magnesian plutonic association [3]. New geochronological data (U-Pb on zircons) slightly correct the age of the SEPC, previously obtained by other methods (290 Ma, [4]). They provide ages of 306 2 Ma for the M group, 305 6 Ma for the G1 group, and 301 4 Ma for the G0 group, which confirm the late-Variscan character of the SEPC, indicating however a faintly older emplacement, during the Upper Carboniferous. Recent whole-rock isotopic data show that the Rb-Sr system suffered significant post-magmatic disturbance, but reveal a consistent set of Sm-Nd results valuable in the approach to the magmatic sources of this massif: M group (2.9 < Ndi < +1.8); G1 group (5.8 < Ndi < 4.6); G0 group (2.2 < Ndi < 0.8). These geochemical data suggest a petrogenetic model for the SEPC explained by a magmatic event developed in two stages. Initially, magmas derived from long-term depleted mantle sources (Ndi < +1.8 in M group) were extracted to the crust promoting its partial melting and extensive mixing and/or AFC magmatic evolution, thereby generating the G1 granites (Ndi < 4.6). Subsequently, a later extraction of similar primary magmas in the same place or nearby, could have caused partial melting of some intermediate facies (e.g. diorites) of the M group, followed by magmatic differentiation processes, mainly fractional crystallization, able to produce residual liquids compositionally close to the G0 granites (Ndi < 0.8). The kinetic energy associated with the structurally controlled (cauldron subsidence type?) motion of the G0 liquids to the periphery, would have been strong enough to drag up M group blocks as those occurring inside the G0 granitic ring.
Resumo:
Cotton is the most abundant natural fiber in the world. Many countries are involved in the growing, importation, exportation and production of this commodity. Paper documentation claiming geographic origin is the current method employed at U.S. ports for identifying cotton sources and enforcing tariffs. Because customs documentation can be easily falsified, it is necessary to develop a robust method for authenticating or refuting the source of the cotton commodities. This work presents, for the first time, a comprehensive approach to the chemical characterization of unprocessed cotton in order to provide an independent tool to establish geographic origin. Elemental and stable isotope ratio analysis of unprocessed cotton provides a means to increase the ability to distinguish cotton in addition to any physical and morphological examinations that could be, and are currently performed. Elemental analysis has been conducted using LA-ICP-MS, LA-ICP-OES and LIBS in order to offer a direct comparison of the analytical performance of each technique and determine the utility of each technique for this purpose. Multivariate predictive modeling approaches are used to determine the potential of elemental and stable isotopic information to aide in the geographic provenancing of unprocessed cotton of both domestic and foreign origin. These approaches assess the stability of the profiles to temporal and spatial variation to determine the feasibility of this application. This dissertation also evaluates plasma conditions and ablation processes so as to improve the quality of analytical measurements made using atomic emission spectroscopy techniques. These interactions, in LIBS particularly, are assessed to determine any potential simplification of the instrumental design and method development phases. This is accomplished through the analysis of several matrices representing different physical substrates to determine the potential of adopting universal LIBS parameters for 532 nm and 1064 nm LIBS for some important operating parameters. A novel approach to evaluate both ablation processes and plasma conditions using a single measurement was developed and utilized to determine the “useful ablation efficiency” for different materials. The work presented here demonstrates the potential for an a priori prediction of some probable laser parameters important in analytical LIBS measurement.
Resumo:
Igneous rocks from the Philippine tectonic plate recovered on Deep Sea Drilling Project Legs 31, 58 and 59 have been analyzed for Sr, Nd and Pb isotope ratios. Samples include rocks from the West Philippine Basin, Daito Basin and Benham Rise (40-60 m.y.), the Palau-Kyushu Ridge (29-44 m.y.) and the Parece Vela and Shikoku basins (17-30 m.y.). Samples from the West Philippine, Parece Vela and Shikoku basins are MORB (mid-ocean ridge basalt)-like with 87Sr/86Sr = 0.7026 - 0.7032, 143Nd/144Nd = 0.51300 - 0.51315, and 206Pb/204Pb = 17.8 - 18.1. Samples from the Daito Basin and Benham Rise are OIB (oceanic island basalt)-like with 87Sr/86Sr = 0.7038 - 0.7040, 143Nd/144Nd = 0.51285 - 0.51291 and 206Pb/204Pb = 18.8 - 19.2. All of these rocks have elevated 207Pb/204Pb and 208Pb/204Pb compared to the Northern Hemisphere Regression Line (NHRL) and have delta207Pb values of 0 to +6 and delta208Pb values of +32 to +65. Lavas from the Palau-Kyushu Ridge, a remnant island arc, have 87Sr/86Sr = 7032 - 0.7035, 143Nd/144Nd = 0.51308 - 0.51310 and 206Pb/204Pb = 18.4 - 18.5. Unlike the basin magmas erupted before and after them, these lavas plot along the NHRL and have Pb-isotope ratios similar to modern Pacific plate MORB's. This characteristic is shared by other Palau-Kyushu Arc volcanic rocks that have been sampled from submerged and subaerial portions of the Mariana fore-arc. At least four geochemically distinct magma sources are required for these Philippine plate magmas. The basin magmas tap Source 1, a MORB-mantle source that was contaminated by EMI (enriched mantle component 1 (Hart, 1988, doi:10.1016/0012-821X(88)90131-8)) and Source 2, an OIB-like mantle source with some characteristics of EMII (enriched mantle component 2 (Hart, 1988)). The arc lavas are derived from Source 3, a MORB-source or residue mantle including Sr and Pb from the subducted oceanic crust, and Source 4, MORB-source or residue mantle including a component with characteristics of HIMU (mantle component with high U/Pb (Hart, 1988)). These same sources can account for many of the isotopic characteristics of recent Philippine plate arc and basin lavas. The enriched components in these sources which are associated with the DUPAL anomaly were probably introduced into the asthenosphere from the deep mantle when the Philippine plate was located in the Southern Hemisphere 60 m.y.b.p.
Resumo:
Isotopic ratios of Sr and Nd from lithogenic components of three isochronous core sections recovered from an east-west transect in the Eastern Mediterranean Sea (EMS) have been analyzed. The data are used for a quantitative estimate of the temporal and spatial variation of detrital flux to the EMS, assuming Saharan dust and Aegean/Nile particulate matter as dominant end members. It was established that the carbonate-free Saharan dust flux during deposition of the nonsapropel layers of marine oxygen isotope stage 5.4 (MIS 5.4) was similar to the present flux. During the deposition of sapropels S5 and S6, however, the Saharan dust input was drastically reduced and was not balanced by a change in the riverine influx at this time. Denser vegetation cover during more humid conditions may have reduced physical erosion and sediment removal in the source area. During marine oxygen isotope stage 6.2 (MIS 6.2) a pronounced increase of Saharan dust and detrital influx from the Aegean region is evident and implies more arid conditions in the southern and northern catchment areas. During this period, intersite variations are interpreted in terms of their geographic location relative to the seaways connecting the Aegean Sea and EMS. The width of the straits and hence the amount of sediment entering the eastern basins may have been affected by a low sea level that impeded interbasin sediment dispersal.
Resumo:
Copper and Zn are essential micronutrients for plants, animals, and humans; however, they may also be pollutants if they occur at high concentrations in soil. Therefore, knowledge of Cu and Zn cycling in soils is required both for guaranteeing proper nutrition and to control possible risks arising from pollution.rnThe overall objective of my study was to test if Cu and Zn stable isotope ratios can be used to investigate into the biogeochemistry, source and transport of these metals in soils. The use of stable isotope ratios might be especially suitable to trace long-term processes occurring during soil genesis and transport of pollutants through the soil. In detail, I aimed to answer the questions, whether (1) Cu stable isotopes are fractionated during complexation with humic acid, (2) 65Cu values can be a tracer for soil genetic processes in redoximorphic soils (3) 65Cu values can help to understand soil genetic processes under oxic weathering conditions, and (4) 65Cu and 66Zn values can act as tracers of sources and transport of Cu and Zn in polluted soils.rnTo answer these questions, I ran adsorption experiments at different pH values in the laboratory and modelled Cu adsorption to humic acid. Furthermore, eight soils were sampled representing different redox and weathering regimes of which two were influenced by stagnic water, two by groundwater, two by oxic weathering (Cambisols), and two by podzolation. In all horizons of these soils, I determined selected basic soil properties, partitioned Cu into seven operationally defined fractions and determined Cu concentrations and Cu isotope ratios (65Cu values). Finally, three additional soils were sampled along a deposition gradient at different distances to a Cu smelter in Slovakia and analyzed together with bedrock and waste material from the smelter for selected basic soil properties, Cu and Zn concentrations and 65Cu and 66Zn values.rnMy results demonstrated that (1) Copper was fractionated during adsorption on humic acid resulting in an isotope fractionation between the immobilized humic acid and the solution (65CuIHA-solution) of 0.26 ± 0.11‰ (2SD) and that the extent of fractionation was independent of pH and involved functional groups of the humic acid. (2) Soil genesis and plant cycling causes measurable Cu isotope fractionation in hydromorphic soils. The results suggested that an increasing number of redox cycles depleted 63Cu with increasing depth resulting in heavier 65Cu values. (3) Organic horizons usually had isotopically lighter Cu than mineral soils presumably because of the preferred uptake and recycling of 63Cu by plants. (4) In a strongly developed Podzol, eluviation zones had lighter and illuviation zones heavier 65Cu values because of the higher stability of organo-65Cu complexes compared to organo-63Cu complexes. In the Cambisols and a little developed Podzol, oxic weathering caused increasingly lighter 65Cu values with increasing depth, resulting in the opposite depth trend as in redoximorphic soils, because of the preferential vertical transport of 63Cu. (5) The 66Zn values were fractionated during the smelting process and isotopically light Zn was emitted allowing source identification of Zn pollution while 65Cu values were unaffected by the smelting and Cu emissions isotopically indistinguishable from soil. The 65Cu values in polluted soils became lighter down to a depth of 0.4 m indicating isotope fractionation during transport and a transport depth of 0.4 m in 60 years. 66Zn values had an opposite depth trend becoming heavier with depth because of fractionation by plant cycling, speciation changes, and mixing of native and smelter-derived Zn. rnCopper showed measurable isotope fractionation of approximately 1‰ in unpolluted soils, allowing to draw conclusions on plant cycling, transport, and redox processes occurring during soil genesis and 65Cu and 66Zn values in contaminated soils allow for conclusions on sources (in my study only possible for Zn), biogeochemical behavior, and depth of dislocation of Cu and Zn pollution in soil. I conclude that stable Cu and Zn isotope ratios are a suitable novel tool to trace long-term processes in soils which are difficult to assess otherwise.rn
Resumo:
The distinctive relations between biological activity and isotopic effect recorded in biomarkers (e.g., carbon and sulfur isotope ratios) have allowed scientists to suggest that life originated on this planet nearly 3.8 billion years ago. The existence of life on other planets may be similarly identified by geochemical biomarkers, including the oxygen isotope ratio of phosphate (δ18Op) presented here. At low near-surface temperatures, the exchange of oxygen isotopes between phosphate and water requires enzymatic catalysis. Because enzymes are indicative of cellular activity, the demonstration of enzyme-catalyzed PO4–H2O exchange is indicative of the presence of life. Results of laboratory experiments are presented that clearly show that δ18OP values of inorganic phosphate can be used to detect enzymatic activity and microbial metabolism of phosphate. Applications of δ18Op as a biomarker are presented for two Earth environments relevant to the search for extraterrestrial life: a shallow groundwater reservoir and a marine hydrothermal vent system. With the development of in situ analytical techniques and future planned sample return strategies, δ18Op may provide an important biosignature of the presence of life in extraterrestrial systems such as that on Mars.
Resumo:
Large-scale compositional domains at DSDP/ODP drill sites 417A, 417D and 418A were analyzed for O, Sr and Nd isotope ratios, and REE, U, K, Rb and Sr abundances, to constrain the bulk chemical composition of the oceanic crust that is recycled at subduction zones. The combination of the three sites gives the composition of the upper oceanic crust in this region over a distance of about 8 km. The d18O(SMOW) and 87Sr/86Sr(meas) of compositional domains 10-100 m in size correlate well, with a range of 7.7-19.2 and 0.70364-0.70744, and mean of 9.96 and 0.70475, respectively. The Rb inventory of the upper crust increases by about an order of magnitude, while Sr contents remain constant. U abundances increase moderately under oxidizing alteration conditions and nearly triple in the commonly reducing alteration environments of the upper oceanic crust. REEs are influenced by alteration only to a small extent, and recycled oceanic crust is similar to MORB with respect to 143Nd/144Nd. Even though the average composition of the upper oceanic crust is well defined, the large scale composition varies widely. Highly altered compositional domains may not have a large impact on the average composition of the oceanic crust, but they may preferentially contribute to fluids or partial melts derived from the crust by prograde metamorphic reactions.
Resumo:
To better understand the links between the carbon cycle and changes in past climate over tectonic timescales we need new geochemical proxy records of secular change in silicate weathering rates. A number of proxies are under development, but some of the most promising (e.g. palaeoseawater records of Li and Nd isotope change) can only be employed on such large samples of mono-specific foraminifera that application to the deep sea sediment core archive becomes highly problematic. "Dentoglobigerina" venezuelana presents a potentially attractive target for circumventing this problem because it is a typically large (> 355 ?m diameter), abundant and cosmopolitan planktic foraminifer that ranges from the early Oligocene to early Pliocene. Yet considerable taxonomic and ecological uncertainties associated with this taxon must first be addressed. Here, we assess the taxonomy, palaeoecology, and ontogeny of "D." venezuelana using stable isotope (oxygen and carbon) and Mg/Ca data measured in tests of late Oligocene to early Miocene age from Ocean Drilling Program (ODP) Site 925, on Ceara Rise, in the western equatorial Atlantic. To help constrain the depth habitat of "D." venezuelana relative to other species we report the stable isotope composition of selected planktic foraminifera species within Globigerina, Globigerinoides, Paragloborotalia and Catapsydrax. We define three morphotypes of "D." venezuelana based on the morphology of the final chamber and aperture architecture. We determine the trace element and stable isotope composition of each morphotype for different size fractions, to test the validity of pooling these morphotypes for the purposes of generating geochemical proxy datasets and to assess any ontogenetic variations in depth habitat. Our data indicate that "D." venezuelana maintains a lower thermocline depth habitat at Ceara Rise between 24 and 21 Ma. Comparing our results to published datasets we conclude that this lower thermocline depth ecology for the Oligo-Miocene is part of an Eocene-to-Pliocene evolution of depth habitat from surface to sub-thermocline for "D." venezuelana. Our size fraction data advocate the absence of photosymbionts in "D." venezuelana and suggest that juveniles calcify higher in the water column, descending into slightly deeper water during the later stages of its life cycle. Our morphotype data show that d18O and d13C variation between morphotypes is no greater than within-morphotype variability. This finding will permit future pooling of morphotypes in the generation of the "sample hungry" palaeoceanographic records.
Resumo:
Trace element concentrations and combined Sr- and Nd-isotope compositions were determined on stromatolitic carbonates (microbialites) from the 2.52 Ga Campbellrand carbonate platform (South Africa). Shale-normalised rare earth element and yttrium patterns of the ancient samples are similar to those of modern seawater in having positive La and Y anomalies and in being depleted in light rare earth elements. In contrast to modem seawater (and microbialite proxies), the 2.52 Ga samples lack a negative Ce anomaly but possess a positive Eu anomaly. These latter trace element characteristics are interpreted to reflect anoxic deep ocean waters where, unlike today, hydrothermal Fe input was not oxidised, and scavenged and rare earth elements were not coprecipitated with Fe-oxyhydroxides. The persistence of a positive Eu anomaly in relatively shallow Campbellrand platform waters indicates a dramatic reversal from hydrothermally dominated (Archaean) to continental erosion-dominated (Phanerozoic) rare earth element flux ratio. The dominant hydrothermal input is also expressed in the initial Sr- and Nd-isotope ratios. There is collinear variation in Sr-Nd systematics, which range from primitive values (Sr-87/Sr-86 of 0.702386 and epsilon (Nd) of +2.1) to more evolved crustal ratios. Mixing calculations show that the range in trace element ratios (e.g., Y/Ho) and initial isotope ratios is not a result of contamination by trapped sediment, but that the chemical band isotopic variation reflects carbonate deposition in an environment where different water masses mixed. Calculated Nd flux ratios yield a hydrothermal input into the 2.52 Ga oceans one order of magnitude larger than continental input. Such a change in flux ratio most likely required substantially reduced continental inputs, which could, in turn, reflect a plate tectonic causation (e.g., reduced topography or expansion of epicontinental seas). Copyright (C) 2001 Elsevier Science Ltd.
Resumo:
Several factors influencing the carbon isotope ratios (CIR) of endogenous urinary steroids have been identified in recent years. One of these should be the metabolism of steroids inside the body involving numerous different enzymes. A detailed look at this metabolism taking into account differences found between steroids excreted as glucuronides or as sulphates and hydrogen isotope ratios of different steroids pointed out possibility of unequal CIR at the main production sites inside the male body - the testes and the adrenal glands. By administration of β-HCG it is possible to strongly stimulate the steroid production within the testes without influencing the production at the adrenal glands. Therefore, this treatment should result in changed CIR of urinary androgens in contrast to the undisturbed pre-treatment values. Four male volunteers received three injections of β-HCG over a time course of 5 days and collected their urine samples at defined intervals after the last administration. Those samples showing the largest response in contrast to the pre-administration urines were identified by steroid profile measurements and subsequent analysed by GC/C/IRMS. CIR of androsterone, etiocholanolone, testosterone, 5α- and 5β-androstanediol and pregnanediol were compared. While pregnanediol was not influenced, most of the investigated androgens showed depleted values after treatment. The majority of differences were found to be statistically significant and nearly all showed the expected trend towards more depleted δ(13)C-values. These results support the hypothesis of different CIR at different production sites inside the human body. The impact of these findings on doping control analysis will be discussed.