949 resultados para analytical approaches
Resumo:
The one-mode analysis method on the pull-in instability of micro-structure under electrostatic loading is presented. Taylor series are used to expand the electrostatic loading term in the one-mode analysis method, which makes analytical solution available. The one-mode analysis is the combination of Galerkin method and Cardan solution of cubic equation. The one-mode analysis offers a direct computation method on the pull-in voltage and displacement. In low axial loading range, it shows little difference with the established multi-mode analysis on predicting the pull-in voltages for three different structures (cantilever, clamped-clamped beams and the plate with four edges simply-supported) studied here. For numerical multi-mode analysis, we also show that using the structural symmetry to select the symmetric mode can greatly reduce both the computation effort and the numerical fluctuation.
Resumo:
The vaporization of condensed materials in contact with high-current discharge plasmas is considered. A kinetic numerical method named direct simulation Monte Carlo (DSMC) and analytical kinetic approaches based on the bimodal distribution function approximation are employed. The solution of the kinetic layer problem depends upon the velocity at the outer boundary of the kinetic layer which varies from very small, corresponding to the high-density plasma near the evaporated surface, up to the sound speed, corresponding to evaporation into vacuum. The heavy particles density and temperature at the kinetic and hydrodynamic layer interface were obtained by the analytical method while DSMC calculation makes it possible to obtain the evolution of the particle distribution function within the kinetic layer and the layer thickness.
Resumo:
In this study, the idealized two-dimensional detonation cells were decomposed into the primary units referred to as sub-cells. Based on the theory of oblique shock waves, an analytical formula was derived to describe the relation between the Mach number ratio through triple-shock collision and the geometric properties of the cell. By applying a modified blast wave theory, an analytical model was developed to predict the propagation of detonation waves along the cell. The calculated results show that detonation wave is, first, strengthened at the beginning of the cell after triple-shock collision, and then decays till reaching the cell end. The analytical results were compared with experimental data and previous numerical results; the agreement between them appears to be good, in general.
Resumo:
Three analytical double-parameter criteria based on a bending model and a two-dimensional finite element analysis model are presented for the modeling of ductile thin film undergoing a nonlinear peeling process. The bending model is based on different governing parameters: (1) the interfacial fracture toughness and the separation strength, (2) the interfacial fracture toughness and the crack tip slope angle, and (3) the interfacial fracture toughness and the critical Mises effective strain of the delaminated thin film at the crack tip. Thin film nonlinear peeling under steady-state condition is solved with the different governing parameters. In addition, the peeling test problem is simulated by using the elastic-plastic finite element analysis model. A critical assessment of the three analytical bending models is made by comparison of the bending model solutions with the finite element analysis model solutions. Furthermore, through analyses and comparisons for solutions based on both the bending model and the finite element analysis model, some connections between the bending model and the finite element analysis model are developed. Moreover, in the present research, the effect of different selections for cohesive zone shape on the ductile film peeling solutions is discussed.
Resumo:
An analytical solution to the three-dimensional scattering and diffraction of plane SV-waves by a saturated hemispherical alluvial valley in elastic half-space is obtained by using Fourier-Bessel series expansion technique. The hemispherical alluvial valley with saturated soil deposits is simulated with Biot's dynamic theory for saturated porous media. The following conclusions based on numerical results can be drawn: (1) there are a significant differences in the seismic response simulation between the previous single-phase models and the present two-phase model; (2) the normalized displacements on the free surface of the alluvial valley depend mainly on the incident wave angles, the dimensionless frequency of the incident SV waves and the porosity of sediments; (3) with the increase of the incident angle, the displacement distributions become more complicated; and the displacements on the free surface of the alluvial valley increase as the porosity of sediments increases.
Resumo:
Ground vibration due to underground railways is a significant source of disturbance for people living or working near the subways. The numerical models used to predict vibration levels have inherent uncertainty which must be understood to give confidence in the predictions. A semi-analytical approach is developed herein to investigate the effect of soil layering on the surface vibration of a halfspace where both soil properties and layer inclination angles are varied. The study suggests that both material properties and inclination angle of the layers have significant effect ( ± 10dB) on the surface vibration response. © 2009 IOP Publishing Ltd.
Resumo:
发展了一种新的分析涂层结构(平板、梁)热残余应力的模型,可以研究骤冷过程(Quenching)和冷却过程(Cooling)在涂层结构内引发的残余应力分布。与以往模型相比,其优势在于:它可以考虑源于喷涂过程的涂层孔隙率、温度梯度等因素对于涂层和基底内残余应力的影响。其中孔隙率和温度分布由计算机模拟涂层沉积过程得到。另外,当基底的材料和几何参数被固定时,我们分析了诸如涂层的理想模量、厚度、热膨胀系数等参数,对于涂层结构中最终残余应力分布的改变机理。
Resumo:
Polypeptide sequences have an inherent tendency to self-assemble into filamentous nanostructures commonly known as amyloid fibrils. Such self-assembly is used in nature to generate a variety of functional materials ranging from protective coatings in bacteria to catalytic scaffolds in mammals. The aberrant self-assembly of misfolded peptides and proteins is also, however, implicated in a range of disease states including neurodegenerative conditions such as Alzheimer's and Parkinson's diseases. It is increasingly evident that the intrinsic material properties of these structures are crucial for understanding the thermodynamics and kinetics of the pathological deposition of proteins, particularly as the mechanical fragmentation of aggregates enhances the rate of protein deposition by exposing new fibril ends which can promote further growth. We discuss here recent advances in physical techniques that are able to characterise the hierarchical self-assembly of misfolded protein molecnles and define their properties. © 2010 Materials Research Society.
Resumo:
This paper proposes an analytical approach that is generalized for the design of various types of electric machines based on a physical magnetic circuit model. Conventional approaches have been used to predict the behavior of electric machines but have limitations in accurate flux saturation analysis and hence machine dimensioning at the initial design stage. In particular, magnetic saturation is generally ignored or compensated by correction factors in simplified models since it is difficult to determine the flux in each stator tooth for machines with any slot-pole combinations. In this paper, the flux produced by stator winding currents can be calculated accurately and rapidly for each stator tooth using the developed model, taking saturation into account. This aids machine dimensioning without the need for a computationally expensive finite element analysis (FEA). A 48-slot machine operated in induction and doubly-fed modes is used to demonstrate the proposed model. FEA is employed for verification.
Resumo:
The objective of the article is to present a unified model for the dynamic mechanical response of ceramics under compressive stress states. The model incorporates three principal deformation mechanisms: (i) lattice plasticity due to dislocation glide or twinning; (ii) microcrack extension; and (iii) granular flow of densely packed comminuted particles. In addition to analytical descriptions of each mechanism, prescriptions are provided for their implementation into a finite element code as well as schemes for mechanism transitions. The utility of the code in addressing issues pertaining to deep penetration is demonstrated through a series of calculations of dynamic cavity expansion in an infinite medium. The results reveal two limiting behavioral regimes, dictated largely by the ratio of the cavity pressure p to the material yield strength σY. At low values of p/σY, cavity expansion occurs by lattice plasticity and hence its rate diminishes with increasing σY. In contrast, at high values, expansion occurs by microcracking followed by granular plasticity and is therefore independent of σY. In the intermediate regime, the cavity expansion rate is governed by the interplay between microcracking and lattice plasticity. That is, when lattice plasticity is activated ahead of the expanding cavity, the stress triaxiality decreases (toward more negative values) which, in turn, reduces the propensity for microcracking and the rate of granular flow. The implications for penetration resistance to high-velocity projectiles are discussed. Finally, the constitutive model is used to simulate the quasi-static and dynamic indentation response of a typical engineering ceramic (alumina) and the results compared to experimental measurements. Some of the pertinent observations are shown to be captured by the present model whereas others require alternative approaches (such as those based on fracture mechanics) for complete characterization. © 2011 The American Ceramic Society.
Resumo:
A brief review is presented of statistical approaches on microdamage evolution. An experimental study of statistical microdamage evolution in two ductile materials under dynamic loading is carried out. The observation indicates that there are large differences in size and distribution of microvoids between these two materials. With this phenomenon in mind, kinetic equations governing the nucleation and growth of microvoids in nonlinear rate-dependent materials are combined with the balance law of void number to establish statistical differential equations that describe the evolution of microvoids' number density. The theoretical solution provides a reasonable explanation of the experimentally observed phenomenon. The effects of stochastic fluctuation which is influenced by the inhomogeneous microscopic structure of materials are subsequently examined (i.e. stochastic growth model). Based on the stochastic differential equation, a Fokker-Planck equation which governs the evolution of the transition probability is derived. The analytical solution for the transition probability is then obtained and the effects of stochastic fluctuation is discussed. The statistical and stochastic analyses may provide effective approaches to reveal the physics of damage evolution and dynamic failure process in ductile materials.
Resumo:
Two types of peeling experiments are performed in the present research. One is for the Al film/Al2O3 substrate system with an adhesive layer between the film and the substrate. The other one is for the Cu film/Al2O3 substrate system without adhesive layer between the film and the substrate, and the Cu films are electroplated onto the Al2O3 substrates. For the case with adhesive layer, two kinds of adhesives are selected, which are all the mixtures of epoxy and polyimide with mass ratios 1:1.5 and 1:1, respectively. The relationships between energy release rate, the film thickness and the adhesive layer thickness are measured during the steady-state peeling process. The effects of the adhesive layer on the energy release rate are analyzed. Using the experimental results, several analytical criteria for the steady-state peeling based on the bending model and on the two-dimensional finite element analysis model are critically assessed. Through assessment of analytical models, we find that the cohesive zone criterion based on the beam bend model is suitable for a weak interface strength case and it describes a macroscale fracture process zone case, while the two-dimensional finite element model is effective to both the strong interface and weak interface, and it describes a small-scale fracture process zone case. (C) 2007 Elsevier Ltd. All rights reserved.