952 resultados para alpha-2-macroglobulin


Relevância:

30.00% 30.00%

Publicador:

Resumo:

PPARs (peroxisome-proliferator-activated receptors) alpha, beta/delta and gamma are a group of transcription factors that are involved in numerous processes, including lipid metabolism and adipogenesis. By comparing liver mRNAs of wild-type and PPARalpha-null mice using microarrays, a novel putative target gene of PPARalpha, G0S2 (G0/G1 switch gene 2), was identified. Hepatic expression of G0S2 was up-regulated by fasting and by the PPARalpha agonist Wy14643 in a PPARalpha-dependent manner. Surprisingly, the G0S2 mRNA level was highest in brown and white adipose tissue and was greatly up-regulated during mouse 3T3-L1 and human SGBS (Simpson-Golabi-Behmel syndrome) adipogenesis. Transactivation, gel shift and chromatin immunoprecipitation assays indicated that G0S2 is a direct PPARgamma and probable PPARalpha target gene with a functional PPRE (PPAR-responsive element) in its promoter. Up-regulation of G0S2 mRNA seemed to be specific for adipogenesis, and was not observed during osteogenesis or myogenesis. In 3T3-L1 fibroblasts, expression of G0S2 was associated with growth arrest, which is required for 3T3-L1 adipogenesis. Together, these data indicate that G0S2 is a novel target gene of PPARs that may be involved in adipocyte differentiation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The relevance of immune-endocrine interactions to the regulation of ovarian function in teleosts is virtually unexplored. As part of the innate immune response during infection, a number of cytokines such as tumor necrosis factor alpha (TNF alpha) and other immune factors, are produced and act on the reproductive system. However, TNF alpha is also an important physiological player in the ovulatory process in mammals. In the present study, we have examined for the first time the effects of TNF alpha in vitro in preovulatory ovarian follicles of a teleost fish, the brown trout (Salmo trutta). Methods: To determine the in vivo regulation of TNF alpha expression in the ovary, preovulatory brook trout (Salvelinus fontinalis) were injected intraperitoneally with either saline or bacterial lipopolysaccharide (LPS). In control and recombinant trout TNF alpha (rtTNF alpha)-treated brown trout granulosa cells, we examined the percentage of apoptosis by flow cytometry analysis and cell viability by propidium iodide (PI) staining. Furthermore, we determined the in vitro effects of rtTNF alpha on follicle contraction and testosterone production in preovulatory brown trout ovarian follicles. In addition, we analyzed the gene expression profiles of control and rtTNF alpha-treated ovarian tissue by microarray and real-time PCR (qPCR) analyses. Results: LPS administration in vivo causes a significant induction of the ovarian expression of TNF alpha. Treatment with rtTNF alpha induces granulosa cell apoptosis, decreases granulosa cell viability and stimulates the expression of genes known to be involved in the normal ovulatory process in trout. In addition, rtTNF alpha causes a significant increase in follicle contraction and testosterone production. Also, using a salmonid-specific microarray platform (SFA2.0 immunochip) we observed that rtTNF alpha induces the expression of genes known to be involved in inflammation, proteolysis and tissue remodeling. Furthermore, the expression of kallikrein, TOP-2, serine protease 23 and ADAM 22, genes that have been postulated to be involved in proteolytic and tissue remodeling processes during ovulation in trout, increases in follicles incubated in the presence of rtTNF alpha. Conclusions In view of these results, we propose that TNF alpha could have an important role in the biomechanics of follicle weakening, ovarian rupture and oocyte expulsion during ovulation in trout, primarily through its stimulation of follicular cell apoptosis and the expression of genes involved in follicle wall proteolysis and contraction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hepatitis C virus (HCV) infection is a major cause of chronic liver disease worldwide. The current standard therapy for chronic hepatitis C (CHC) consists of a combination of pegylated IFN alpha (pegIFNalpha) and ribavirin. It achieves a sustained viral clearance in only 50-60% of patients. To learn more about molecular mechanisms underlying treatment failure, we investigated IFN-induced signaling in paired liver biopsies collected from CHC patients before and after administration of pegIFNalpha. In patients with a rapid virological response to treatment, pegIFNalpha induced a strong up-regulation of IFN-stimulated genes (ISGs). As shown previously, nonresponders had high expression levels of ISGs before therapy. Analysis of posttreatment biopsies of these patients revealed that pegIFNalpha did not induce expression of ISGs above the pretreatment levels. In accordance with ISG expression data, phosphorylation, DNA binding, and nuclear localization of STAT1 indicated that the IFN signaling pathway in nonresponsive patients is preactivated and refractory to further stimulation. Some features characteristic of nonresponders were more accentuated in patients infected with HCV genotypes 1 and 4 compared with genotypes 2 and 3, providing a possible explanation for the poor response of the former group to therapy. Taken together with previous findings, our data support the concept that activation of the endogenous IFN system in CHC not only is ineffective in clearing the infection but also may impede the response to therapy, most likely by inducing a refractory state of the IFN signaling pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In previous studies we showed that the wild-type histamine H(2) receptor stably expressed in Chinese hamster ovary cells is constitutively active. Because constitutive activity of the H(2) receptor is already found at low expression levels (300 fmol/mg protein) this receptor is a relatively unique member of the G-protein-coupled receptor (GPCR) family and a useful tool for studying GPCR activation. In this study the role of the highly conserved DRY motif in activation of the H(2) receptor was investigated. Mutation of the aspartate 115 residue in this motif resulted in H(2) receptors with high constitutive activity, increased agonist affinity, and increased signaling properties. In addition, the mutant receptors were shown to be highly structurally instable. Mutation of the arginine 116 residue in the DRY motif resulted also in a highly structurally instable receptor; expression of the receptor could only be detected after stabilization with either an agonist or inverse agonist. Moreover, the agonist affinity at the Arg-116 mutant receptors was increased, whereas the signal transduction properties of these receptors were decreased. We conclude that the Arg-116 mutant receptors can adopt an active conformation but have a decreased ability to couple to or activate the G(s)-protein. This study examines the pivotal role of the aspartate and arginine residues of the DRY motif in GPCR function. Disruption of receptor stabilizing constraints by mutation in the DRY motif leads to the formation of active GPCR conformations, but concomitantly to GPCR instability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Systemic mastocytosis is characterized by an excessive proliferation of mast cells and their accumulation in different organs. Avoidance of trigger factors leading to anaphylaxis is a general measure valid for all forms of mastocytosis. A premedication is necessary in case of surgery, anesthesia or administration of radiocontrast agents. Symptomatic treatment comprises antihistamines, anti-leukotrienes, proton pump inhibitors and topical corticosteroids. Indolent mastocytosis with refractory symptoms, the rare cases of aggressive mastocytosis with organ dysfunction and the even rarer mast cell leukemia require cytoreductive therapy. First-line agents are interferon alpha 2b and imatinib, a tyrosine kinase inhibitor. To date there is no curative treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relative occurrence of genetic variants of human alpha 1-acid glycoprotein (AGP) in relation to changes in glycosylation was studied in sera of patients with burn injury, media of cytokine-treated primary cultures of human hepatocytes and Hep 3B cells, and sera of transgenic mice expressing the human AGP-A gene. It is concluded (i) that the glycosylation of AGP was not dependent on its genetic expression and (ii) that both the variants determined by the AGP-A gene as well as by the AGP-B/B' genes are increased after inflammation or treatment with interleukins 1 and 6.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We evaluated the role of the G alpha-q (Galphaq) subunit of heterotrimeric G proteins in the insulin signaling pathway leading to GLUT4 translocation. We inhibited endogenous Galphaq function by single cell microinjection of anti-Galphaq/11 antibody or RGS2 protein (a GAP protein for Galphaq), followed by immunostaining to assess GLUT4 translocation in 3T3-L1 adipocytes. Galphaq/11 antibody and RGS2 inhibited insulin-induced GLUT4 translocation by 60 or 75%, respectively, indicating that activated Galphaq is important for insulin-induced glucose transport. We then assessed the effect of overexpressing wild-type Galphaq (WT-Galphaq) or a constitutively active Galphaq mutant (Q209L-Galphaq) by using an adenovirus expression vector. In the basal state, Q209L-Galphaq expression stimulated 2-deoxy-D-glucose uptake and GLUT4 translocation to 70% of the maximal insulin effect. This effect of Q209L-Galphaq was inhibited by wortmannin, suggesting that it is phosphatidylinositol 3-kinase (PI3-kinase) dependent. We further show that Q209L-Galphaq stimulates PI3-kinase activity in p110alpha and p110gamma immunoprecipitates by 3- and 8-fold, respectively, whereas insulin stimulates this activity mostly in p110alpha by 10-fold. Nevertheless, only microinjection of anti-p110alpha (and not p110gamma) antibody inhibited both insulin- and Q209L-Galphaq-induced GLUT4 translocation, suggesting that the metabolic effects induced by Q209L-Galphaq are dependent on the p110alpha subunit of PI3-kinase. In summary, (i) Galphaq appears to play a necessary role in insulin-stimulated glucose transport, (ii) Galphaq action in the insulin signaling pathway is upstream of and dependent upon PI3-kinase, and (iii) Galphaq can transmit signals from the insulin receptor to the p110alpha subunit of PI3-kinase, which leads to GLUT4 translocation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: Pseudohypoaldosteronism type I (PHA1) is a rare inborn disease causing severe salt loss. Mutations in the three coding genes of the epithelial sodium channel (ENaC) are responsible for the systemic autosomal recessive form. So far, no phenotype has been reported in heterozygous carriers. PATIENTS: A consanguineous family from Somalia giving birth to a neonate suffering from PHA1 was studied including clinical and hormonal characteristics of the family, mutational analysis of the SCNN1A, SCNN1B, SCNN1G and CFTR genes and in vitro analysis of the functional consequences of a mutant ENaC channel. RESULTS: CFTR mutations have been excluded. SCNN1A gene analysis revealed a novel homozygous c.1684T > C mutation resulting in a S562P substitution in the alphaENaC protein of the patient. Functional analysis showed a significantly reduced S562P channel function compared to ENaC wild type. Protein synthesis and channel subunit assembly were not altered by the S562P mutation. Co-expression of mutant and wild-type channels revealed a dominant negative effect. In heterozygote carriers, sweat sodium and chloride concentrations were increased without additional hormonal or clinical phenotypes. CONCLUSION: Hence, the novel mutation S562P is causing systemic PHA1 in the homozygous state. A thorough clinical investigation of the heterozygote SCNN1A mutation carriers revealed increased sweat sodium and chloride levels consistent with a dominant effect of the mutant S562P allele. Whether this subclinical phenotype is of any consequence for the otherwise asymptomatic heterozygous carriers has to be elucidated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The appearance of immunoreactive alpha-melanotropin (alpha-MSH) and adrenocorticotropin (ACTH) during development was studied in 3 areas of the rat brain--cerebral hemispheres, midbrain and hindbrain--from embryonic day (ED) 13-14 until day 21 postnatally. The alpha-MSH content in vivo was always highest in the midbrain; a peak content at birth was followed by a transient decline and a later, higher plateau from postnatal day 7 onwards. The alpha-MSH content in the cerebral hemispheres rose progressively after birth reaching a peak at day 21. Values in the hindbrain rose at day 3 and changed relatively sue taken at ED 15-16 showed a gradual increase in alpha-MSH content over the 20 days. The alpha-MSH content of hindbrain cultures remained at constant low levels, while no alpha-MSH was detectable in cerebral hemisphere cultures. ACTH appeared in vivo earlier than alpha-MSH and was detectable in embryonic brains at ED 13-14. A transient rise was seen at ED 17-18 and major peaks at birth, day 2 and day 3, in the midbrain, hemispheres and hindbrain, respectively. In vitro, the ACTH content increased in all brain regions during the first 5 days in culture and showed no further change thereafter. Comparisons of the in vivo and in vitro development of alpha-MSH and ACTH demonstrate that (i) these two peptide systems are independent in respect to their localization and time of appearance; (ii) they undergo maturation both in vivo and in vitro; (iii) epigenetic factors, such as interactions with other neurotransmitter systems may modulate the developmental pattern of these two peptides.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An alpha-spectrometry, using automated borate fusion and sequential extraction and exchange chromatography, was used to determine the uranium and thorium based on environmental radioactivity of 20 soil samples. The same set of the samples was analysed using gamma-spectrometry with an HPGe detector. The two data sets were checked for coherence using Z-score and chi2 statistical tests. We show that gamma-spectrometry is a valid alternative to time-consuming alpha-spectrometry for the determination of natural uranium and thorium activity in soil (activity range: 12.5-58.2 Bq/kg). The measured activities were compared with the theoretical activities to ensure secular equilibrium in the 238U and 232Th series. For 226Ra, a special study was made on deconvolution of the 186 keV multiplet with the Levenberg-Marquardt algorithm. Finally, the combined use of Z-score and chi2-tests was found to be a powerful tool for comparing the results obtained with two different methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mutations in RPE65 protein is characterized by the loss of photoreceptors, although the molecular pathways triggering retinal cell death remain largely unresolved. The role of the Bcl-2 family of proteins in retinal degeneration is still controversial. However, alteration in Bcl-2-related proteins has been observed in several models of retinal injury. In particular, Bax has been suggested to play a crucial role in apoptotic pathways in murine glaucoma model as well as in retinal detachment-associated cell death. We demonstrated that Bcl-2-related signaling pathway is involved in Rpe65-dependent apoptosis of photoreceptors during development of the disease. Pro-apoptotic Bax alpha and beta isoforms were upregulated in diseased retina. This was associated with a progressive reduction of anti-apoptotic Bcl-2, reflecting imbalanced Bcl-2/Bax ratio as the disease progresses. Moreover, specific translocation of Bax beta from cytosol to mitochondria was observed in Rpe65-deficient retina. This correlated with the initiation of photoreceptor cell loss at 4 months of age, and further increased during disease development. Altogether, these data suggest that Bcl-2-apoptotic pathway plays a crucial role in Leber's congenital amaurosis disease. They further highlight a new regulatory mechanism of Bax-dependent apoptosis based on regulated expression and activation of specific isoforms of this protein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have characterized the maturation, co- and posttranslational modifications, and functional properties of the alpha(1B)-adrenergic receptor (AR) expressed in different mammalian cells transfected using conventional approaches or the Semliki Forest virus system. We found that the alpha(1B)-AR undergoes N-linked glycosylation as demonstrated by its sensitivity to endoglycosidases and by the effect of tunicamycin on receptor maturation. Pulse-chase labeling experiments in BHK-21 cells demonstrate that the alpha(1B)-AR is synthesized as a 70 kDa core glycosylated precursor that is converted to the 90 kDa mature form of the receptor with a half-time of approximately 2 h. N-Linked glycosylation of the alpha(1B)-AR occurs at four asparagines on the N-terminus of the receptor. Mutations of the N-linked glycosylation sites did not have a significant effect on receptor function or expression. Surprisingly, receptor mutants lacking N-linked glycosylation migrated as heterogeneous bands in SDS-PAGE. Our findings demonstrate that N-linked glycosylation and phosphorylation, but not palmitoylation or O-linked glycosylation, contribute to the structural heterogeneity of the alpha(1B)-AR as it is observed in SDS-PAGE. The modifications found are similar in the different mammalian expression systems explored. Our findings indicate that the Semliki Forest virus system can provide large amounts of functional and fully glycosylated alpha(1B)-AR protein suitable for biochemical and structural studies. The results of this study contribute to elucidate the basic steps involved in the processing of G protein-coupled receptors as well as to optimize strategies for their overexpression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tissue protein hypercatabolism (TPH) is a most important feature in cancer cachexia, particularly with regard to the skeletal muscle. The rat ascites hepatoma Yoshida AH-130 is a very suitable model system for studying the mechanisms involved in the processes that lead to tissue depletion, since it induces in the host a rapid and progressive muscle waste mainly due to TPH (Tessitore, L., G. Bonelli, and F. M. Baccino. 1987. Biochem. J. 241:153-159). Detectable plasma levels of tumor necrosis factor-alpha associated with marked perturbations in the hormonal homeostasis have been shown to concur in forcing metabolism into a catabolic setting (Tessitore, L., P. Costelli, and F. M. Baccino. 1993. Br. J. Cancer. 67:15-23). The present study was directed to investigate if beta 2-adrenergic agonists, which are known to favor skeletal muscle hypertrophy, could effectively antagonize the enhanced muscle protein breakdown in this cancer cachexia model. One such agent, i.e., clenbuterol, indeed largely prevented skeletal muscle waste in AH-130-bearing rats by restoring protein degradative rates close to control values. This normalization of protein breakdown rates was achieved through a decrease of the hyperactivation of the ATP-ubiquitin-dependent proteolytic pathway, as previously demonstrated in our laboratory (Llovera, M., C. García-Martínez, N. Agell, M. Marzábal, F. J. López-Soriano, and J. M. Argilés. 1994. FEBS (Fed. Eur. Biochem. Soc.) Lett. 338:311-318). By contrast, the drug did not exert any measurable effect on various parenchymal organs, nor did it modify the plasma level of corticosterone and insulin, which were increased and decreased, respectively, in the tumor hosts. The present data give new insights into the mechanisms by which clenbuterol exerts its preventive effect on muscle protein waste and seem to warrant the implementation of experimental protocols involving the use of clenbuterol or alike drugs in the treatment of pathological states involving TPH, particularly in skeletal muscle and heart, such as in the present model of cancer cachexia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tissue protein hypercatabolism (TPH) is a most important feature in cancer cachexia, particularly with regard to the skeletal muscle. The rat ascites hepatoma Yoshida AH-130 is a very suitable model system for studying the mechanisms involved in the processes that lead to tissue depletion, since it induces in the host a rapid and progressive muscle waste mainly due to TPH (Tessitore, L., G. Bonelli, and F. M. Baccino. 1987. Biochem. J. 241:153-159). Detectable plasma levels of tumor necrosis factor-alpha associated with marked perturbations in the hormonal homeostasis have been shown to concur in forcing metabolism into a catabolic setting (Tessitore, L., P. Costelli, and F. M. Baccino. 1993. Br. J. Cancer. 67:15-23). The present study was directed to investigate if beta 2-adrenergic agonists, which are known to favor skeletal muscle hypertrophy, could effectively antagonize the enhanced muscle protein breakdown in this cancer cachexia model. One such agent, i.e., clenbuterol, indeed largely prevented skeletal muscle waste in AH-130-bearing rats by restoring protein degradative rates close to control values. This normalization of protein breakdown rates was achieved through a decrease of the hyperactivation of the ATP-ubiquitin-dependent proteolytic pathway, as previously demonstrated in our laboratory (Llovera, M., C. García-Martínez, N. Agell, M. Marzábal, F. J. López-Soriano, and J. M. Argilés. 1994. FEBS (Fed. Eur. Biochem. Soc.) Lett. 338:311-318). By contrast, the drug did not exert any measurable effect on various parenchymal organs, nor did it modify the plasma level of corticosterone and insulin, which were increased and decreased, respectively, in the tumor hosts. The present data give new insights into the mechanisms by which clenbuterol exerts its preventive effect on muscle protein waste and seem to warrant the implementation of experimental protocols involving the use of clenbuterol or alike drugs in the treatment of pathological states involving TPH, particularly in skeletal muscle and heart, such as in the present model of cancer cachexia.