971 resultados para alpha(1)-adrenoceptor
Resumo:
To assess the role of altered alpha 2 beta 1 integrin expression in breast cancer, we expressed the alpha 2 beta 1 integrin de novo in a poorly differentiated mammary carcinoma that expressed no detectable alpha 2-integrin subunit. Expression of the alpha 2 beta 1 integrin resulted in a dramatic phenotypic alteration from a fibroblastoid, spindle-shaped, non-contact-inhibited, motile, and invasive cell to an epithelioid, polygonal-shaped, contact-inhibited, less motile, and less invasive cell. Although expression of the alpha 2 subunit did not alter adhesion to collagen, it profoundly altered cell spreading. Re-expression of the alpha 2 beta 1 integrin restored the ability to differentiate into gland-like structures in three-dimensional matrices and markedly reduced the in vivo tumorigenicity of the cells. These results indicate that the consequences of diminished alpha 2 beta 1-integrin expression in the development of breast cancer and, presumably, of other epithelial malignancies are increased tumorigenicity and loss of the differentiated epithelial phenotype.
Resumo:
The enzyme collagenase (EC 3.4.24.7), a key mediator in biological remodeling, can be induced in early-passage fibroblasts by a wide variety of agents and conditions. In contrast, at least some primary tissue fibroblasts are incompetent to synthesize collagenase in response to many of these stimulators. In this study, we investigate mechanisms controlling response to two of the conditions in question: (i) trypsin or cytochalasin B, which disrupt actin stress fibers, or (ii) phorbol 12-myristate 13-acetate (PMA), which activates growth factor signaling pathways. We demonstrate that collagenase expression stimulated by trypsin or cytochalasin B is regulated entirely through an autocrine cytokine, interleukin 1 alpha (IL-1 alpha). The IL-1 alpha intermediate also constitutes the major mechanism by which PMA stimulates collagenase expression, although a second signaling pathway(s) contributes to a minor extent. Elevation of the IL-1 alpha level in response to stimulators is found to be sustained by means of an autocrine feedback loop in early-passage fibroblast cultures. In contrast, fibroblasts freshly isolated from the tissue are incompetent to activate and sustain the IL-1 alpha feedback loop, even though they synthesize collagenase in response to exogenous IL-1. We conclude that this is the reason why tissue fibroblasts are limited, in comparison with subcultured fibroblasts, in their capacity to synthesize collagenase. Activation of the IL-1 alpha feedback loop, therefore, seems likely to be an important mechanism by which resident tissue cells adopt the remodeling phenotype.
Resumo:
Anchorage-dependent cells that are prevented from attaching to an extracellular matrix substrate stop proliferating and may undergo apoptosis. Cell adhesion to a substrate is mediated by the integrin family of cell surface receptors, which are known to elicit intracellular signals upon cell adhesion. We show here that Chinese hamster ovary cells expressing the alpha 5 beta 1 integrin, which is a fibronectin receptor, do not undergo apoptosis upon serum withdrawal when the cells are plated on fibronectin. However, the alpha v beta 1 integrin, which is also a fibronectin receptor and binds fibronectin on the same RGD motif as alpha 5 beta 1, did not prevent apoptosis on fibronectin of the same cells. The cytoplasmic domain of the integrin alpha 5 subunit was required for the alpha 5 beta 1-mediated cell survival on fibronectin. The fibronectin-mediated survival effect appeared to be independent of the level of tyrosine phosphorylation of the focal adhesion kinase, which is induced by integrin-mediated cell attachment. The expression of the Bcl-2 protein, which counteracts apoptosis, was elevated in cells attaching to fibronectin through alpha 5 beta 1; cells attaching through alpha v beta 1 survived only if exogenous Bcl-2 was provided. Thus, alpha 5 beta 1, but not the closely related alpha v beta 1 integrin, appears to suppress apoptotic cell death through the Bcl-2 pathway.
Resumo:
Vascular cell adhesion molecule 1 (VCAM-1) represents a structurally and functionally distinct class of immunoglobulin superfamily molecules that bind leukocyte integrins and are involved in inflammatory and immune functions. X-ray crystallography defines the three-dimensional structure of the N-terminal two-domain fragment that participates in ligand binding. Residues in domain 1 important for ligand binding reside in the C-D loop, which projects markedly from one face of the molecule near the contact between domains 1 and 2. A cyclic peptide that mimics this loop inhibits binding of alpha 4 beta 1 integrin-bearing cells to VCAM-1. These data demonstrate how crystallographic structural information can be used to design a small molecule inhibitor of biological function.
Resumo:
We observed that when monocyte/macrophage precursors derived from murine bone marrow were treated with macrophage-colony-stimulating factor (M-CSF), there was a dose-dependent increase in both the number of adherent cells and the degree to which the cells were highly spread. Attachment was supported by fibronectin, but not by vitronectin or laminin, suggesting that the integrins alpha 4 beta 1 and/or alpha 5 beta 1 might mediate this event. Binding to fibronectin was blocked partially by antibodies to either integrin, and inhibition was almost complete when the antibodies were used in combination. By a combination of surface labeling with 125I and metabolic labeling with [35S]methionine and [35S]cysteine, we demonstrated that M-CSF treatment led to increased synthesis and surface expression of the two beta 1 integrins. Since attachment to fibronectin and/or stromal cells plays an important role in the maturation of other hematopoietic lineages, we propose that the action of M-CSF in the differentiation of immature monocytes/macrophages includes stimulated expression of the integrins alpha 4 beta 1 and alpha 5 beta 1, leading to interactions with components of the marrow microenvironment necessary for cell maturation.
Resumo:
vpr is one of the auxiliary genes of human immunodeficiency virus type 1 (HIV-1) and is conserved in the related HIV-2/simian immunodeficiency virus lentiviruses. The unique feature of Vpr is that it is the only nonstructural protein incorporated into the virus particle. Secondary structural analysis predicted an amphipathic alpha-helical domain in the amino terminus of Vpr (residues 17-34) which contains five acidic and four leucine residues. To evaluate the role of specific residues of the helical domain for virion incorporation, mutagenesis of this domain was carried out. Substitution of proline for any of the individual acidic residues (Asp-17 and Glu-21, -24, -25, and -29) eliminated the virion incorporation of Vpr and also altered the stability of Vpr in cells. Conservative replacement of glutamic residues of the helical domain with aspartic residues resulted in Vpr characteristic of wild type both in stability and virion incorporation, as did substitution of glutamine for the acidic residues. In contrast, replacement of leucine residues of the helical domain (residues 20, 22, 23, and 26) by alanine eliminated virion incorporation function of Vpr. These data indicate that acidic and hydrophobic residues and the helical structure in this region are critical for the stability of Vpr and its efficient incorporation into virus-like particles.
Resumo:
Protein phosphatase 1 (PP1) is a highly conserved enzyme that has been implicated in diverse biological processes in the brain as well as in nonneuronal tissues. The present study used light and electron microscopic immunocytochemistry to characterize the distribution of two PP1 isoforms, PP1 alpha and PP1 gamma 1, in the rat neostriatum. Both isoforms are heterogeneously distributed in brain with the highest immunoreactivity being found in the neostriatum and hippocampal formation. Further, both isoforms are highly and specifically concentrated in dendritic spines. Weak immunoreactivity is present in dendrites, axons, and some axon terminals. Immunoreactivity for PP1 alpha is also present in the perikaryal cytoplasm and nuclei of most medium- and large-sized neostriatal neurons. The specific localization of PP1 in dendritic spines is consistent with a central role for this enzyme in signal transduction. The data support the concept that, in the course of evolution, spines developed as specialized signal transduction organelles enabling neurons to integrate diverse inputs from multiple afferent nerve terminals.
Resumo:
Mucosal vascular addressin cell adhesion molecule 1 (MAdCAM-1) is involved in trafficking of lymphocytes to mucosal endothelium. Expression of MAdCAM-1 is induced in the murine endothelial cell line bEnd.3 by tumor necrosis factor alpha (TNF-alpha), interleukin 1, and bacterial lipopolysaccharide. Here we show that TNF-alpha enhances expression of a firefly luciferase reporter directed by the MAdCAM-1 promoter, confirming transcriptional regulation of MAdCAM-1. Mutational analysis of the promoter indicates that a DNA fragment extending from nt -132 to nt +6 of the gene is sufficient for TNF-alpha inducibility. Two regulatory sites critical for TNF-alpha induction were identified in this region. DNA-binding experiments demonstrate that NF-kappa B proteins from nuclear extracts of TNF-alpha-stimulated bEnd.3 cells bind to these sites, and transfection assays with promoter mutants of the MAdCAM-1 gene indicate that occupancy of both sites is essential for promoter function. The predominant NF-kappa B binding activity detected with these nuclear extracts is a p65 homodimer. These findings establish that, as with other endothelial cell adhesion molecules, transcriptional induction of MAdCAM-1 by TNF-alpha requires activated NF-kappa B proteins.
Resumo:
Serine/threonine protein kinase AMP-activated protein kinase (AMPK) is a key metabolic stress-responsive factor that promotes the adaptation of cells to their microenvironment. Elevated concentrations of intracellular AMP, caused by metabolic stress, are known to activate AMPK by phosphorylation of the catalytic subunit. Recently, the tumor suppressor serine/threonine protein kinase LKB1 was identified as an upstream kinases, AMPKKs. In the current study, we found that stimulation with growth factors also caused AMPK-alpha subunit phosphorylation. Interestingly, even an LKB1-nonexpressing cancer cell line, HeLa, exhibited growth factor-stimulated AMPK-alpha subunit phosphorylation, suggesting the presence of an LKB1-independent pathway for AMPK-alpha subunit phosphorylation. In the human pancreatic cancer cell line PANC-1, AMPK-alpha subunit phosphorylation promoted by IGF-I was suppressed by antisense ataxia telangiectasia mutated (ATM) expression. We found that IGF-1 also induced AMPK-alpha subunit phosphorylation in the human normal fibroblast TIG103 cell line, but failed to do so in a human fibroblast AT2-KY cell line lacking ATM. Immunoprecipitates of ATM collected from IGF-1-stimulated cells also caused the phosphorylation of the AMPK-alpha subunit in vitro. IGF-1-stimulated ATM phosphorylation at both threonine and tyrosine residues, and our results demonstrated that the phosphorylation of tyrosine in the ATM molecule is important for AMPK-alpha subunit phosphorylation during IGF-1 signaling. These results suggest that IGF-1 induces AMPK-alpha subunit phosphorylation via an ATM-dependent and LKB1-independent pathway. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Theoretical calculations (B3LYP/6-311+G(3df,2p)//B3LYP/6-31G*) of the 1,3 migration of NR2 transforming alpha-oxoketenimines 1 to alpha-imidoylketenes 3 and vice versa indicate that this process is a pseudo-pericyclic reaction with a low activation energy (NH2 97 kJ mol(-1), N(CH3)(2) 62 kJ mol(-1)). The oxoketenimines were found to be more stable (by 18-35 kJ mol(-1)) which is in line with experimental observations. The hindered amine rotation in the amide and amidine moieties adjacent to the cumulenes are important in the migration of the NR2 group, as one of the rotation transition states is close to the 1,3 migration pathway. This gives an interesting potential energy surface with a valley-ridge inflection (VRI) between the orthogonal hindered amine rotation and 1,3 migration transition states. The imidoylketene may also undergo ring closure to an azetinone 5; however, this is metastable, and under the conditions that allow the 1,3-migration, the oxoketenimine 1 will be favored. The imine NH E/Z-interconversion of the ketenimine group takes place by inversion and has a low activation barrier (similar to40 kJ mol(-1)). In all the amidines examined the E/Z-interconversion of the imine function was predicted to be by rotation with a high barrier (>80 kJ mol(-1)), in contrast to all other reported imine E/Z-interconversions which are by inversion.
Resumo:
The staggerer mice carry a deletion in the RORalpha gene and have a prolonged humoral response, overproduce inflammatory cytokines, and are immunodeficient. Furthermore, the staggerer mice display lowered plasma apoA-I/-II, decreased plasma high density lipoprotein cholesterol and triglycerides, and develop hypo-alpha-lipoproteinemia and atherosclerosis. However, relatively little is known about RORalpha in the context of target tissues, target genes, and lipid homeostasis. For example, RORalpha is abundantly expressed in skeletal muscle, a major mass peripheral tissue that accounts for similar to40% of total body weight and 50% of energy expenditure. This lean tissue is a primary site of glucose disposal and fatty acid oxidation. Consequently, muscle has a significant role in insulin sensitivity, obesity, and the blood-lipid profile. In particular, the role of RORalpha in skeletal muscle metabolism has not been investigated, and the contribution of skeletal muscle to the ROR-/- phenotype has not been resolved. We utilize ectopic dominant negative RORalpha expression in skeletal muscle cells to understand the regulatory role of RORs in this major mass peripheral tissue. Exogenous dominant negative RORalpha expression in skeletal muscle cells represses the endogenous levels of RORalpha and -gamma mRNAs and ROR-dependent gene expression. Moreover, we observed attenuated expression of many genes involved in lipid homeostasis. Furthermore, we show that the muscle carnitine palmitoyltransferase-1 and caveolin-3 promoters are directly regulated by ROR and coactivated by p300 and PGC-1. This study implicates RORs in the control of lipid homeostasis in skeletal muscle. In conclusion, we speculate that ROR agonists would increase fatty acid catabolism in muscle and suggest selective activators of ROR may have therapeutic utility in the treatment of obesity and atherosclerosis.
Resumo:
1,3-Phenyl shifts interconvert imidoylketenes 1 and alpha-oxoketenimines 2 and, likewise, alpha-oxoketenes 3 automerize by this 1,3-shift. These rearrangements usually take place in the gas phase under conditions of. ash vacuum thermolysis. Energy profiles calculated at the B3LYP/6-31G(d, p) and B3LYP/6311 + G(3df,2p)//B3LYP/6-31G(d,p) levels demonstrate that electron donating substituents ( D) in the migrating phenyl group and electron withdrawing ones ( W) in the non-migrating phenyl group, can stabilise the transition states TS1 and TS2 to the extent that activation barriers of ca. 100 kJ mol(-1) or less are obtained; i.e. enough to make these reactions potentially observable in solution at ordinary temperatures. The calculated transition state energies Delta G(TS1) show an excellent correlation with the Hammett constants sigma(p)(W) and sigma(p) +(D).
Resumo:
Characterized for the first time in erythrocytes, phosphatidylinositol phosphate kinases (PIP kinases) belong to a family of enzymes that generate various lipid messengers and participate in several cellular processes, including gene expression regulation. Recently, the PIPKIIα gene was found to be differentially expressed in reticulocytes from two siblings with hemoglobin H disease, suggesting a possible relationship between PIPKIIα and the production of globins. Here, we investigated PIPKIIα gene and protein expression and protein localization in hematopoietic-derived cells during their differentiation, and the effects of PIPKIIα silencing on K562 cells. PIPKIIα silencing resulted in an increase in α and γ globins and a decrease in the proliferation of K562 cells without affecting cell cycle progression and apoptosis. In conclusion, using a cell line model, we showed that PIPKIIα is widely expressed in hematopoietic-derived cells, is localized in their cytoplasm and nucleus, and is upregulated during erythroid differentiation. We also showed that PIPKIIα silencing can induce α and γ globin expression and decrease cell proliferation in K562 cells.