900 resultados para adhesion forces
Resumo:
This study used scanning electron microscopy (SEM) to evaluate the morphology and adhesion of blood components on root surfaces instrumented by curettes, piezoelectric ultrasonic scaler and Er,Cr:YSGG laser. One hundred samples from 25 teeth were divided into 5 groups: 1) Curettes; 2) Piezoelectric ultrasonic scaler; 3) Curettes plus piezoelectric ultrasonic scaler; 4) Er,Cr:YSGG laser; 5) Curettes plus Er,Cr:YSGG laser. Ten samples from each group were used for analysis of root morphology and the other 10 were used for analysis of adhesion of blood components on root surface. The results were analyzed statistically by the Kruskall-Wallis and Mann-Whitney tests with a significance level of 5%. The group treated with curettes showed smoother surfaces when compared to the groups were instrumented with piezoelectric ultrasonic scaler and the Er,Cr:YSGG laser. The surfaces instrumented with piezoelectric ultrasonic scaler and Er,Cr:YSGG laser, alone or in combination with hand scaling and root planing, did not differ significantly (p>0.05) among themselves. No statistically significant differences (p>0.05) among groups were found as to the adhesion of blood components on root surface. Ultrasonic instrumentation and Er,Cr:YSGG irradiation produced rougher root surfaces than the use of curettes, but there were no differences among treatments with respect to the adhesion of blood components.
Resumo:
Plasma processing of the surfaces of biomaterials is interesting because it enables modification of the characteristics of a surface without affecting bulk properties. In addition, the results are strongly influenced by the conditions of the treatment. Therefore, by adjusting the plasma parameters it is possible to tailor the surface properties to best fulfill the requirements of a given application. In this work, polyurethane substrates have been subjected to sulfur hexafluoride glow discharge plasmas. The influences of different SF 6 plasma exposure times and pressures on the adhesion of Staphylococcus aureus and Pseudomonas aeruginosa to the polymer have been investigated. The wettability and surface free energy have been evaluated via contact angle measurements. At low pressure (6.7 Pa) the contact angle decreases with increasing exposure time in the 180 s to 540 s interval, but at higher pressure (13.3 Pa) it increases as a function of the same variable. Bacterial adhesion has been quantified from in vitro experiments by determining the growth of colonies on Petri dishes treated with agar nutrient. It has been observed that the surface properties play an important role in microbe adhesion. For instance, the density of adhered P. aeruginosa decreased as the surface contact angle increased. S. aureus preferred to adhere to hydrophobic surfaces. © 2011 by Begell House, Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this study was to evaluate the effects of different irrigants on sealer-dentin bond strength when using Real Seal. Thirty single-rooted teeth were divided into 3 groups. In one group, the teeth were irrigated with 3 mL of 2.5% NaOCl after each file change, flushed with 17% EDTA for 3 min and finally rinsed with 3 mL of 2.5% NaOCl. In the other two groups, rinse with NaOCl was replaced with 2% chlorhexidine gluconate (CHX) and 0.9% saline, respectively. Each root was sectioned transversally into apical, middle and coronal thirds to obtain 2-mm-thick slices. Each slice was filled with Real Seal and Resilon. Push-out test was used to analyze bond strength and failure modes were classified as adhesive, cohesive or mixed, according to SEM observations. The push-out test did not reveal any statistically significant difference (p>0.05) between the irrigants. However, the groups exhibited significantly different (p<0.05) bond strengths in terms of the root canal third. Higher bond strength was observed at the apical third when compared with coronal third, while middle third presented intermediary values. Fifteen specimens were analyzed by SEM (5 per group). Eleven specimens exhibited adhesive failures (5 in saline, 4 in NaOCl and 2 in CHX group); 2 cohesive failures were observed in the CHX group, and 1 mixed failure each was observed in the CHX and NaOCl groups. The tested irrigants did not influence the bond strength of Resilon and Real Seal to dentin. The apical third exhibited higher mean bond strengths and adhesive failures were predominant.
Resumo:
Objective: This study investigated the effect of experimental photopolymerized coatings, containing zwitterionic or hydrophilic monomers, on the hydrophobicity of a denture base acrylic resin and on Candida albicans adhesion. Methods: Acrylic specimens were prepared with rough and smooth surfaces and were either left untreated (control) or coated with one of the following experimental coatings: 2-hydroxyethyl methacrylate (HE); 3-hydroxypropyl methacrylate (HP); and 2-trimethylammonium ethyl methacrylate chloride (T); and sulfobetaine methacrylate (S). The concentrations of these constituent monomers were 25%, 30% or 35%. Half of the specimens in each group (control and experimentals) were coated with saliva and the other half remained uncoated. The surface free energy of all specimens was measured, regardless of the experimental condition. C. albicans adhesion was evaluated for all specimens, both saliva conditioned and unconditioned. The adhesion test was performed by incubating specimens in C. albicans suspensions (1 × 10 7 cell/mL) at 37 °C for 90 min. The number of adhered yeasts were evaluated by XTT (2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-5-[{phenylamino} carbonyl]-2H-tetrazolium-hydroxide) method. Results: For rough surfaces, coatings S (30 or 35%) and HP (30%) resulted in lower absorbance values compared to control. These coatings exhibited more hydrophilic surfaces than the control group. Roughness increased the adhesion only in the control group, and saliva did not influence the adhesion. The photoelectron spectroscopy analysis (XPS) confirmed the chemical changes of the experimental specimens, particularly for HP and S coatings. Conclusions: S and HP coatings reduced significantly the adhesion of C. albicans to the acrylic resin and could be considered as a potential preventive treatment for denture stomatitis. © 2012 Elsevier Ltd.
Resumo:
Plasma processing of carbon fibers (CFs) is aimed to provide better contact and adhesion between individual plies without decrease in the CF mechanical resistance. This paper deals with surface modification of CFs by an atmospheric pressure dielectric barrier discharge (DBD) for enhancing the adhesion between the CF and the polymeric matrix. The scanning electron microscopy of the treated samples revealed many small particles distributed over entire surface of the fiber. These particles are product of the fiber surface etching during the DBD treatment that removes the epoxy layer covering as-received samples. The alteration of the CF surface morphology was also confirmed by the Atomic force microscopy (AFM), which indicated that the CF roughness increased as a result of the plasma treatment. The analysis of the surface chemical composition provided by X-ray photoelectron spectroscopy showed that oxygen and nitrogen atoms are incorporated onto the surface. The polar oxygen groups formed on the surface lead to the increasing of the CF surface energy. The results of interlaminar shear strength test (short beam) of CFs/polypropylene composites demonstrated a greater shear resistance of the composites made with CFs treated by DBD than the one with untreated fibers. Both the increase in surface roughness and the surface oxidation contribute for the enhancement of CF adhesion properties. © 2012 IEEE.
Resumo:
This study evaluated the potential of plasma treatments to modify the surface chemistry and hydrophobicity of a denture base acrylic resin to reduce the Candida glabrata adhesion. Specimens (n=54) with smooth surfaces were made and divided into three groups (n=18): control - non-treated; experimental groups - submitted to plasma treatment (Ar/50W; AAt/130W). The effects of these treatments on chemical composition and surface topography of the acrylic resin were evaluated. Surface free energy measurements (SFE) were performed after the treatments and after 48h of immersion in water. For each group, half (n=9) of the specimens were preconditionated with saliva before the adhesion assay. The number of adhered C. glabrata was evaluated by cell counting after crystal violet staining. The Ar/50W and AAt/130W treatments altered the chemistry composition, hydrophobicity and topography of acrylic surface. The Ar/50W group showed significantly lower C. glabrata adherence than the control group, in the absence of saliva. After preconditioning with saliva, C. glabrata adherence in experimental and control groups did not differ significantly. There were significant changes in the SFE after immersion in water. The results demonstrated that Ar/50W treated surfaces have potential for reducing C. glabrata adhesion to denture base resins and deserve further investigation, especially to tailor the parameters to prolong the increased wettability. © 2012 Blackwell Verlag GmbH.
Resumo:
Purpose: Adhesive cementation is an important step for restorations made of feldspathic ceramic as it increases the strength of such materials. Incorrect selection of the adhesive resin and the resin cement to adhere to the ceramic surface and their durability against aging can affect the adhesion between these materials and the clinical performance. This study evaluated the effect of adhesive resins with different pHs, resin cements with different polymerization modes, and aging on the bond strength to feldspathic ceramic. Materials and Methods: One surface of feldspathic ceramic blocks (VM7) (N = 90) (6.4 × 6.4 × 4.8 mm3) was conditioned with 10% hydrofluoric acid for 20 seconds, washed/dried, and silanized. Three adhesive resins (Scotchbond Multi-Purpose Plus [SBMP], pH: 5.6; Single Bond [SB], pH: 3.4; and Prime&Bond NT [NT], pH: 1.7) were applied on the ceramic surfaces (n = 30 per adhesive). For each adhesive group, three resin cements with different polymerization modes were applied (n = 10 per cement): photo-polymerized (Variolink II base), dual polymerized (Variolink II base + catalyst), and chemically polymerized (C&B). The bonded ceramic blocks were stored in water (37°C) for 24 hours and sectioned to produce beam specimens (cross-sectional bonded area: 1 ± 0.1 mm2). The beams of each block were randomly divided into two conditions: Dry, microtensile test immediately after cutting; TC, test was performed after thermocycling (12,000×, 5°C to 55°C) and water storage at 37°C for 150 days. Considering the three factors of the study (adhesive [3 levels], resin cement [3 levels], aging [2 levels]), 18 groups were studied. The microtensile bond strength data were analyzed using 3-way ANOVA and Tukey's post hoc test (α= 0.05). Results: Adhesive resin type (p < 0.001) and the resin cement affected the mean bond strength (p= 0.0003) (3-way ANOVA). The NT adhesive associated with the chemically polymerized resin cement in both dry (8.8 ± 6.8 MPa) and aged conditions (6.9 ± 5.9 MPa) presented statistically lower bond strength results, while the SBMP adhesive resin, regardless of the resin cement type, presented the highest results (15.4 to 18.5 and 14.3 to 18.9 MPa) in both dry and aged conditions, respectively (Tukey's test). Conclusion: Application of a low-pH adhesive resin onto a hydrofluoric acid etched and silanized feldspathic ceramic surface in combination with chemically polymerized resin cement did not deliver favorable results. The use of adhesive resin with high pH could be clinically advised for the photo-, dual-, and chemically polymerized resin cements tested. © 2012 by the American College of Prosthodontists.
Resumo:
E-cadherin and beta-catenin are component of adherens junctions in epithelial cells. Loss of these proteins have been associated with progression of prostatic diseases. We performed immunohistochemistry for E-cadherin, beta-catenin and Ki-67 on canine prostatic lesions. We analyzed the expression of these antibodies in benign prostatic hyperplasia (BPH, n = 22), in pre neoplastic lesions Prostatic Intra-epithelial Neoplasia (PIN), n = 3 and Prostatic Inflammatory Atrophy (PIA), n = 7 and prostate carcinoma (PC, n = 10). In this study, a membranous expression of E-cadherin and beta-catenin and nuclear expression of Ki-67 antigen were demonstrated. The proliferative index was statistically different between carcinomas and BPH and carcinomas and pre-neoplastic lesions. Like in men, the reduction of E-cadherin and increase of Ki-67 expression in neoplastic lesions in dog prostate may be related to the carcinogenic process in this gland. © 2013 Asian Network for Scientific Information.
Resumo:
This study evaluated the influence of deposition parameters for Si-based thin films using magnetron sputtering for coating zirconia and subsequent adhesion of resin cement. Zirconia ceramic blocks were randomly divided into 8 groups and specimens were either ground finished and polished or conditioned using air-abrasion with alumina particles coated with silica. In the remaining groups, the polished specimens were coated with Si-based film coating with argon/oxygen magnetron discharge at 8:1 or 20:1 flux. In one group, Si-based film coating was performed on air-abraded surfaces. After application of bonding agent, resin cement was bonded. Profilometry, goniometry, Energy Dispersive X-ray Spectroscopy and Rutherford Backscattering Spectroscopy analysis were performed on the conditioned zirconia surfaces. Adhesion of resin cement to zirconia was tested using shear bond test and debonded surfaces were examined using Scanning Electron Microscopy. Si-based film coating applied on air-abraded rough zirconia surfaces increased the adhesion of the resin cement (22.78 ± 5.2 MPa) compared to those of other methods (0-14.62 MPa) (p = 0.05). Mixed type of failures were more frequent in Si film coated groups on either polished or air-abraded groups. Si-based thin films increased wettability compared to the control group but did not change the roughness, considering the parameters evaluated. Deposition parameters of Si-based thin film and after application of air-abrasion influenced the initial adhesion of resin cement to zirconia. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
OBJETIVO: avaliar, in vitro, a influência do clareamento dentário com gel contendo fosfato de cálcio amorfo (ACP) na resistência da união adesiva de braquetes metálicos. MÉTODOS: trinta e seis dentes incisivos bovinos foram seccionados no limite coronorradicular e tiveram suas coroas incluídas em cilindros de PVC. Os corpos de prova foram divididos em três grupos (n = 12), de acordo com a realização do tratamento clareador e tipo de gel utilizado, sendo: G1 (controle) - sem clareamento; G2 - clareamento com gel sem ACP (Whiteness Perfect, FGM); G3 - clareamento com gel contendo ACP (Nite White ACP, Discus Dental). Os grupos G2 e G3 foram submetidos a 14 ciclos de clareamento, seguidos de intervalo de espera de 15 dias para a fixação adesiva dos braquetes metálicos. O ensaio mecânico de cisalhamento foi realizado em máquina universal Kratos, com velocidade de 0,5mm/min. Após o teste mecânico, os corpos de prova foram avaliados quanto ao índice de remanescente adesivo (ARI). Os resultados foram submetidos à ANOVA, ao teste de Tukey e ao de Kruskall-Wallis (α = 5%). RESULTADOS: diferenças significativas foram observadas entre os grupos testados. O grupo controle G1 (11,1MPa) mostrou uma resistência ao cisalhamento estatisticamente superior aos grupos submetidos ao clareamento (G2 = 5,40MPa; G3 = 3,73MPa), os quais não diferiram entre si. Não se observou diferença significativa para o ARI entre os grupos estudados. CONCLUSÃO: o clareamento dentário reduz a resistência da união adesiva de braquetes metálicos, enquanto a presença de ACP no gel clareador não influencia os resultados encontrados.
Resumo:
Root resorption is a variable to be considered in induced tooth movement (ITM). It is related to root morphology and alveolar bone crest, and also to the types of forces exerted by mechanotherapy. This histometric study evaluated the predominance of root resorption among roots of different dimensions, following ITM with different types of forces and at different time intervals. The study was conducted on 54 rats divided into three groups, according to the type of force: continuous (CF), continuous interrupted (CIF) and intermittent (IF), at periods of 5, 7 and 9 days. The percentage of resorption between mesiobuccal roots of larger dimension and intermediate roots of smaller dimension was assessed. The evaluations were performed on the AxioVision software, and the non-parametric analysis of variance for repeated measures in independent groups was further applied, consisting of a scheme of two factors, and complemented by the Dunn test at a significance level of 5%. The intermediate roots presented a higher percentage of resorption, which was gradual at the periods evaluated for the three types of forces, but mainly for CF. Comparing the intermediate roots with the mesiobuccal roots, there was a statistically significant difference (p < 0.05) in the CF group at day 7 and day 9, and in the FI group, at day 9. The intragroup analysis evidenced a statistically significant difference (p < 0.05) between the 5th and the 9th day for the intermediate root in the CF group. The intergroup analysis did not reveal any statistically significant difference (p > 0.05) in individually analyzed roots.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study compared the effect of physicochemical surface conditioning methods on the adhesion of bis-GMA-based resin cement to particulate filler composite (PFC) used for indirect dental restorations. PFC blocks (N (block)=54, n (block)=9 per group) were polymerized and randomly subjected to one of the following surface conditioning methods: a) No conditioning (Control-C), b) Hydrofluoric acid (HF)etching for 60s (AE60), c) HF for 90s (AE90), d) HF for 120s (AE120), e) HF for 180s (AE180), and f) air-abrasion with 30 mu m silica-coated alumina particles (AB). The conditioned surfaces were silanized with an MPS silane, and an adhesive resin was applied. Resin composite blocks were bonded to PFC using resin cement and photo-polymerized. PFC-cement-resin composite blocks were cut under coolant water to obtain bar specimens (1mmx0.8mm). Microtensile bond strength test (mu TBS)was performed in a universal testing machine (1mm/min). After debonding, failure modes were classified using stereomicroscopy. Surface characterization was performed on a set of separate specimen surfaces using Scanning Electron Microscopy (SEM), X-Ray Dispersive Spectroscopy (XDS), X-Ray Photoelectron Spectroscopy (XPS), and Fourier Transform-Raman Spectroscopy (FT-RS). Mean mu TBS (MPa) of C (35.6 +/- 4.9) was significantly lower than those of other groups (40.2 +/- 5.6-47.4 +/- 6.1) (p<0.05). The highest mu TBS was obtained in Group AB (47.4 +/- 6.1). Prolonged duration of HF etching increased the results (AE180: 41.9 +/- 7), but was not significantly different than that of AB (p>0.05). Failure types were predominantly cohesive in PFC (34 out of 54) followed by cohesive failure in the cement (16 out of 54). Degree of conversion (DC) of the PFC was 63 +/- 10%. SEM analysis showed increased irregularities on PFC surfaces with the increased etching time. Chemical surface analyses with XPS and FT-RS indicated 11-70% silane on the PFC surfaces that contributed to improved bond strength compared to Group C that presented 5% silane, which seemed to be a threshold. Group AB displayed 83% SiO2 and 17% silane on the surfaces.