989 resultados para adaptive operator selection
Resumo:
To compete over limited parental resources, young animals communicate with their parents and siblings by producing honest vocal signals of need. Components of begging calls that are sensitive to food deprivation may honestly signal need, whereas other components may be associated with individual-specific attributes that do not change with time such as identity, sex, absolute age and hierarchy. In a sib-sib communication system where barn owl (Tyto alba) nestlings vocally negotiate priority access to food resources, we show that calls have individual signatures that are used by nestlings to recognize which siblings are motivated to compete, even if most vocalization features vary with hunger level. Nestlings were more identifiable when food-deprived than food-satiated, suggesting that vocal identity is emphasized when the benefit of winning a vocal contest is higher. In broods where siblings interact iteratively, we speculate that individual-specific signature permits siblings to verify that the most vocal individual in the absence of parents is the one that indeed perceived the food brought by parents. Individual recognition may also allow nestlings to associate identity with individual-specific characteristics such as position in the within-brood dominance hierarchy. Calls indeed revealed age hierarchy and to a lower extent sex and absolute age. Using a cross-fostering experimental design, we show that most acoustic features were related to the nest of origin (but not the nest of rearing), suggesting a genetic or an early developmental effect on the ontogeny of vocal signatures. To conclude, our study suggests that sibling competition has promoted the evolution of vocal behaviours that signal not only hunger level but also intrinsic individual characteristics such as identity, family, sex and age.
Weak and Strong Altruism in Trait Groups: Reproductive Suicide, Personal Fitness, and Expected Value
Resumo:
A simple variant of trait group selection, employing predators as the mechanism underlying group selection, supports contingent reproductive suicide as altruism (i.e., behavior lowering personal fitness while augmenting that of another) without kin assortment. The contingent suicidal type may either saturate the population or be polymorphic with a type avoiding suicide, depending on parameters. In addition to contingent suicide, this randomly assorting morph may also exhibit continuously expressed strong altruism (sensu Wilson 1979) usually thought restricted to kin selection. The model will not, however, support a sterile worker caste as such, where sterility occurs before life history events associated with effective altruism; reproductive suicide must remain fundamentally contingent (facultative sensu West Eberhard 1987; Myles 1988) under random assortment. The continuously expressed strong altruism supported by the model may be reinterpreted as probability of arbitrarily committing reproductive suicide, without benefit for another; such arbitrary suicide (a "load" on "adaptive" suicide) is viable only under a more restricted parameter space relative to the necessarily concomitant adaptive contingent suicide.
Resumo:
This paper characterizes the relationship between entrepreneurial wealth and aggregate investment under adverse selection. Its main finding is that such a relationship need not be monotonic. In particular, three results emerge from the analysis: (i) pooling equilibria, in which investment is independent of entrepreneurial wealth, are more likely to arise when entrepreneurial wealth is relatively low; (ii) separating equilibria, in which investment is increasing in entrepreneurial wealth, are most likely to arise when entrepreneurial wealth is relatively high and; (iii) for a given interest rate, an increase in entrepreneurial wealth may generate a discontinuous fall in investment.
Resumo:
In this paper we study the relevance of multiple kernel learning (MKL) for the automatic selection of time series inputs. Recently, MKL has gained great attention in the machine learning community due to its flexibility in modelling complex patterns and performing feature selection. In general, MKL constructs the kernel as a weighted linear combination of basis kernels, exploiting different sources of information. An efficient algorithm wrapping a Support Vector Regression model for optimizing the MKL weights, named SimpleMKL, is used for the analysis. In this sense, MKL performs feature selection by discarding inputs/kernels with low or null weights. The approach proposed is tested with simulated linear and nonlinear time series (AutoRegressive, Henon and Lorenz series).
Resumo:
Aim: We asked whether myocardial flow reserve (MFR) by Rb-82 cardiac PET improve the selection of patients eligible for invasive coronary angiography (ICA). Material and Methods: We enrolled 26 consecutive patients with suspected or known coronary artery disease who performed dynamic Rb-82 PET/CT and (ICA) within 60 days; 4 patients who underwent revascularization or had any cardiovascular events between PET and ICA were excluded. Myocardial blood flow at rest (rMBF), at stress with adenosine (sMBF) and myocardial flow reserve (MFR=sMBF/rMBF) were estimated using the 1-compartment Lortie model (FlowQuant) for each coronary arteries territories. Stenosis severity was assessed using computer-based automated edge detection (QCA). MFR was divided in 3 groups: G1:MFR<1.5, G2:1.5≤MFR<2 and G3:2≤MFR. Stenosis severity was graded as non-significant (<50% or FFR ≥0.8), intermediate (50%≤stenosis<70%) and severe (≥70%). Correlation between MFR and percentage of stenosis were assessed using a non-parametric Spearman test. Results: In G1 (44 vessels), 17 vessels (39%) had a severe stenosis, 11 (25%) an intermediate one, and 16 (36%) no significant stenosis. In G2 (13 vessels), 2 (15%) vessels presented a severe stenosis, 7 (54%) an intermediate one, and 4 (31%) no significant stenosis. In G3 (9 vessels), 0 vessel presented a severe stenosis, 1 (11%) an intermediate one, and 8 (89%) no significant stenosis. Of note, among 11 patients with 3-vessel low MFR<1.5 (G1), 9/11 (82%) had at least one severe stenosis and 2/11 (18%) had at least one intermediate stenosis. There was a significant inverse correlation between stenosis severity and MFR among all 66 territories analyzed (rho= -0.38, p=0.002). Conclusion: Patients with MFR>2 could avoid ICA. Low MFR (G1, G2) on a vessel-based analysis seems to be a poor predictor of severe stenosis severity. Patients with 3-vessel low MFR would benefit from ICA as they are likely to present a significant stenosis in at least one vessel.
Resumo:
In cooperative multiagent systems, agents interac to solve tasks. Global dynamics of multiagent teams result from local agent interactions, and are complex and difficult to predict. Evolutionary computation has proven a promising approach to the design of such teams. The majority of current studies use teams composed of agents with identical control rules ("geneti- cally homogeneous teams") and select behavior at the team level ("team-level selection"). Here we extend current approaches to include four combinations of genetic team composition and level of selection. We compare the performance of genetically homo- geneous teams evolved with individual-level selection, genetically homogeneous teams evolved with team-level selection, genetically heterogeneous teams evolved with individual-level selection, and genetically heterogeneous teams evolved with team-level selection. We use a simulated foraging task to show that the optimal combination depends on the amount of cooperation required by the task. Accordingly, we distinguish between three types of cooperative tasks and suggest guidelines for the optimal choice of genetic team composition and level of selection
Resumo:
Studying the geographic variation of phenotypic traits can provide key information about the potential adaptive function of alternative phenotypes. Gloger's rule posits that animals should be dark-vs. light-colored in warm and humid vs. cold and dry habitats, respectively. The rule is based on the assumption that melanin pigments and/or dark coloration confer selective advantages in warm and humid regions. This rule may not apply, however, if genes for color are acting on other traits conferring fitness benefits in specific climes. Covariation between coloration and climate will therefore depend on the relative importance of coloration or melanin pigments and the genetically correlated physiological and behavioral processes that enable an animal to deal with climatic factors. The Barn Owl (Tyto alba) displays three melanin-based plumage traits, and we tested whether geographic variation in these traits at the scale of the North American continent supported Gloger's rule. An analysis of variation of pheomelanin-based reddish coloration and of the number and size of black feather spots in 1,369 museum skin specimens showed that geographic variation was correlated with ambient temperature and precipitation. Owls were darker red in color and displayed larger but fewer black feather spots in colder regions. Owls also exhibited more and larger black spots in regions where the climate was dry in winter. We propose that the associations between pigmentation and ambient temperature are of opposite sign for reddish coloration and spot size vs. the number of spots because selection exerted by climate (or a correlated variable) is plumage trait-specific or because plumage traits are genetically correlated with different adaptations.
Resumo:
This paper studies how the strength of intellectual property rights (IPRs) affects investments in biological innovations when the value of an innovation is stochastically reduced to zero because of the evolution of pest resistance. We frame the problem as a research and development (R&D) investment game in a duopoly model of sequential innovation. We characterize the incentives to invest in R&D under two competing IPR regimes, which differ in their treatment of the follow-on innovations that become necessary because of pest adaptation. Depending on the magnitude of the R&D cost, ex ante firms might prefer an intellectual property regime with or without a “research exemption” provision. The study of the welfare function that also accounts for benefit spillovers to consumers—which is possible analytically under some parametric conditions, and numerically otherwise—shows that the ranking of the two IPR regimes depends critically on the extent of the R&D cost.
Resumo:
Two populations of the wasp Trypoxylon rogenhoferi Kohl, 1884 from São Carlos and Luís Antônio, State of São Paulo, Brazil, were observed and sampled from May 1999 to February 2001 using trap-nests. This mass-provisioning wasp was used to test some aspects of optimal sex allocation theory. Both populations fit all the predictions of the models of Green and Brockmann and Grafen. Maternal provisions determined the size of each offspring, and females allocated well-stocked brood cells to daughters, the sex that benefits most being large. This strategy resulted in a difference in size between the sexes. In São Carlos, female weight at emergence was 1.18 times that of males, in Luís Antônio this value was 1.13. The brood cell volume was correlated with both wing length and weight at emergence in both sexes, and the chance that a given brood cell contained a male offspring decreased with increased brood cell volume. In T. rogenhoferi female body size was related to fitness. Larger females were able to collect more mass of spiders per day, the spiders they captured were heavier, and they provisioned more brood cells per day. They also produced larger daughters. For males, no relationship between body size and fitness was found, but the data were scarce. Since the patterns of provisioning were variable among different females in both study sites, it is possible that the females not follow a unique strategy for sex allocation. The sex ratio and/or investment ratio in the São Carlos population was female-biased and in Luís Antônio, male-biased. In spite of the influence of trap-nests diameters on male production in Luís Antônio, there is some evidence that in São Carlos population the local availability of prey and/or lower rate of parasitism may be major forces in determining the observed sex ratio, but further studies are necessary to verify such hypothesis.
Resumo:
Learning ability can be substantially improved by artificial selection in animals ranging from Drosophila to rats. Thus these species have not used their evolutionary potential with respect to learning ability, despite intuitively expected and experimentally demonstrated adaptive advantages of learning. This suggests that learning is costly, but this notion has rarely been tested. Here we report correlated responses of life-history traits to selection for improved learning in Drosophila melanogaster. Replicate populations selected for improved learning lived on average 15% shorter than the corresponding unselected control populations. They also showed a minor reduction in fecundity late in life and possibly a minor increase in dry adult mass. Selection for improved learning had no effect on egg-to-adult viability, development rate, or desiccation resistance. Because shortened longevity was the strongest correlated response to selection for improved learning, we also measured learning ability in another set of replicate populations that had been selected for extended longevity. In a classical olfactory conditioning assay, these long-lived flies showed an almost 40% reduction in learning ability early in life. This effect disappeared with age. Our results suggest a symmetrical evolutionary trade-off between learning ability and longevity in Drosophila.
Resumo:
Interviewing in professional labor markets is a costly process for firms. Moreover, poor screening can have a persistent negative impact on firms bottom lines and candidates careers. In a simple dynamic model where firms can pay a cost to interview applicants who have private information about their own ability, potentially large inefficiencies arise from information-based unemployment, where able workers are rejected by firms because of their lack of offers in previous interviews. This effect may make the market less efficient than random matching. We show that the first best can be achieved using either a mechanism with transfers or one without transfers.
Resumo:
Inflammasomes are protein complexes that form in response to pathogen-derived or host-derived stress signals. Their activation leads to the production of inflammatory cytokines and promotes a pyrogenic cell death process. The massive release of inflammatory mediators that follows inflammasome activation is a key event in alarming innate immune cells. Growing evidence also highlights the role of inflammasome-dependent cytokines in shaping the adaptive immune response, as exemplified by the capacity of IL-1β to support Th17 responses, or by the finding that IL-18 evokes antigen-independent IFN-γ secretion by memory CD8(+) T cells. A deeper understanding of these mechanisms and on how to manipulate this powerful inflammatory system therefore represents an important step forward in the development of improved vaccine strategies.