940 resultados para acetic acid ethyl ester
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Bacterial cellulose (BC) membranes produced by gram-negative, acetic acid bacteria (Gluconacetobacter xylinus), were used as flexible substrates for the fabrication of Organic Light Emitting Diodes (OLED). In order to achieve the necessary conductive properties indium tin oxide (ITO) thin films were deposited onto the membrane at room temperature using radio frequency (r.f) magnetron sputtering with an r.f. power of 30 W, at pressure of 8 mPa in Ar atmosphere without any subsequent thermal treatment. Visible light transmittance of about 40% was observed. Resistivity, mobility and carrier concentration of deposited ITO films were 4.90 x 10(-4) Ohm cm, 8.08 cm(2)/V-s and -1.5 x 10(21) cm(-3), respectively, comparable with commercial ITO substrates. In order to demonstrate the feasibility of devices based on BC membranes three OLEDs with different substrates were produced: a reference one with commercial ITO on glass, a second one with a SiO(2) thin film interlayer between the BC membrane and the ITO layer and a third one just with ITO deposited directly on the BC membrane. The observed OLED luminance ratio was: 1; 0.5; 0.25 respectively, with 2400 cd/m(2) as the value for the reference OLED. These preliminary results show clearly that the functionalized biopolymer, biodegradable, biocompatible bacterial cellulose membranes can be successfully used as substrate in flexible organic optoelectronic devices. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The investigation of Aristolochia brasiliensis and A. esperanzae afforded 12 clerodane derivatives, including the following six novel ones: rel (5S, 8R, 9S, 10R)-2-oxo-ent-3-cleroden-15-oic acid, rel (5S, 8R, 9S, 10R)-2-oxo-ent-clerod-3,13-dien-15-oic acid methyl ester, (5R, 8R, 9S, 10R)-ent-3-cleroden-15-oic acid, rel (5S, 8R, 9S, 10R)-ent-clerod-3,13-dien-15-oic acid, (2S, 5R, 8R, 9S, 10R)-2-hydroperoxy-ent-3-cleroden-15-oic acid methyl ester and (2S, 5R, 8R, 9S, 10R)-2-hydroperoxy-ent-clerod-3,13-dien-15-oic acid methyl ester. The structures were assigned on the basis of spectral data and derivatization by chemical reactions. The occurrence of this type of diterpene has not previously been reported in Aristolochiaceae. © 1987.
Resumo:
The effect of pheromones and their chemical analogues in honeybee alarm behaviors was studied in observation boxes. Defensive behaviors, as follows: a) attraction to scent source, b) elevation of wings in 'V', c) abdomen elevation, d) abdomen elevation and pumping and e) first leg pair elevation had been temporarily registered when the following compounds were presented: isoamyl alcohol, octyl alcohol, benzyl alcohol, n-butyl acetate, n-octyl acetate, isopentyl acetate, benzyl acetate and 2-heptanone. The results were as follows: 1. the bees elicited some characteristic behaviors when chemical alarm messages were presented, 2. agression (stinging) was not completed with any compound tested, probably because there was not a target (visual stimulus), 3. in all situations the attraction to scent source was low, 4. all the behaviors were elicited in a temporarily different way, 5. the compounds that elicited stronger responses and a greater number of the investigated behaviors were: isopentyl acetate, 2-heptanone, octyl acetate and n-octyl alcohol. In all situations, the first behavior response (and the most intense one) was the elevation and pumping the abdomen. This suggests that the chemical message was promptly recognized and then transmitted to each worker. So, the results obtained in the present work, suggest that chemical alarm messages may be recognized by different mechanisms of neural integration.
Resumo:
The objective of this experiment was to analyze the rumen fermentation of silages made from corn harvested at milk stage (MS), milk early dough stage (MEDS), medium dough stage (MDS) and semi-hard dough stage (SHDS). Rumen fluid was collected from sheep by esophageal tube at 0, 1, 3 and 6 hours after feeding. There were no differences among silages for ammonia nitrogen (NH3-N) and methylene blue reduction time (MBRT). Only the MS and SHDS silages differed in rumen pH (6.82 and 6.53, respectively). Differences in total rumen VFA and acetic acid concentrations (mmoles/L) were observed among stages, but not between MS (36.40 and 22.13) and MEDS (42.49 and 25.73), nor between MDS (64.52 and 40.34 respectively) and SHDS (64.09 and 43.61, respectively). The periods of 1 and 3 hours after feeding showed the smallest pH values (6.47 and 6.63), the highest NH3-N concentrations (9.75 and 10.56 mg/dL) and the highest concentrations of total VFA, and acetic and propionic acids (60.33, 37.05 and 16.73; 59.40, 35.28 and 16.84 mmoles/L, respectively). On the whole, the MDS and SHDS silages showed the best rumen fermentation patterns based on pH and total and individual VFA values.
Resumo:
The ruminai fermentation patterns of sheep fed elephant grass (Pennisetum purpureum Schum.) silage enriched with ground ear corn with husks, wheat bran and saccharin in the levels 0, 8, 16 and 24% dry weight of additive/wet weight of green chop was evaluated. A split-plot randomized block design was used. The plots were the additives and their levels and the sub-plots the time of rumen fluid collection (0, 1, 3, 6, 9, 12 and 24 h after feeding). During the collection period, the sheep were fed 80% of the observed voluntary feed intake of the previous phase. For all additive types and levels used in preparing the silages, high levels of total volatile fat acids were observed, with predominance of the acetic acid. The silages having ground ear corn with husks as additive showed, in the ruminai fluid, ammonia production levels below the recommended for maximum microbial protein synthesis. However, silages with saccharin or wheat bran presented a good ammoniacal-N availability. In the ruminal fluid of the sheep fed ground ear corn with husks or wheat bran the molar proportion of butyric acid was increased and that of acetic acid and pH were decreased, as the levels of the additives in the silage increased.
Resumo:
Purpose: This investigation studied the effects of 3 surface treatments on the shear bond strength of a light-activated composite resin bonded to acrylic resin denture teeth. Materials and Methods: The occlusal surfaces of 30 acrylic resin denture teeth were ground flat with up to 400-grit silicon carbide paper. Three different surface treatments were evaluated: (1) the flat ground surfaces were primed with methyl methacrylate (MMA) monomer for 180 seconds; (2) light-cured adhesive resin was applied and light polymerized according to the manufacturer's instructions; and (3) treatment 1 followed by treatment 2. The composite resin was packed on the prepared surfaces using a split mold. The interface between tooth and composite was loaded at a cross-head speed of 0.5 mm/min until failure. Results: Analysis of variance indicated significant differences between the surface treatments. Results of mean comparisons using Tukey's test showed that significantly higher shear bond strengths were developed by bonding composite resin to the surfaces that were previously treated with MMA and then with the bonding agent when compared to the other treatments. Conclusion: Combined surface treatment of MMA monomer followed by application of light-cured adhesive resin provided the highest shear bond strength between composite resin and acrylic resin denture teeth.
Resumo:
Sol-gel derived hybrids that contain OCH2CH2 (polyethylene glycol, PEG) repeat units grafted onto a siliceous backbone by urea, -NHC(=O)NH-, or urethane, -NHC(=O)O-, bridges have been prepared. It is demonstrated that the white light PL of these materials results from an unusual convolution of a longer lived emission that originates in the NH groups of the urea/urethane bridges with shorter lived electron-hole recombinations occurring in the nanometer-sized siliceous domains. The PL efficiencies reported here (maximum quantum yields at room temperature of ≈ 0.20 ± 0.02 at a 400 nm excitation wavelength) are in the same range as those for tetramethoxysilane-formic acid, and APTES-acetic acid, sol-gel derived phosphors. The high quantum yields combined with the possibility of tuning the emission to colors across the chromaticity diagram present a wide range of potential applications for these hybrid materials.
Resumo:
This study was designed to separately evaluate the analgesic capacity of 15% tea from Achillea millefolium leaves and florid ends. Three different tests were performed. The animals were separated in 3 groups: group I (control) that received water, group II that received florid end tea, and group III that received leaf tea. The first test was the writhing test induced by intraperitoneal injection of acetic acid in male Swiss mice. The second test consisted of the measurement of tail flick reflex latency (TFRL) in male Wistar rats after receiving a painful thermal stimulus. The groups received the teas or water per os, prior to observation. In the third test, the Wistar rats were submitted to an approximately 1 cm long incision in their tails to test the effect of the teas on induced inflammatory pain. The results showed that the effect of the 15% leaf tea on the mice writhing and TFRL test were not statistically significant. The florid ends tea showed a significantly increase in number of writhes in mice and TFRL in rats after administration. With regard to the effect of the teas on inflammatory pain, ingestion of both preparations caused an increase in the force threshold necessary for the avoidance reflex, indicating antihyperalgesic action of both the leaf and florid ends 15% teas of Achillea millefolium.