914 resultados para abstract reasoning
Resumo:
This article examines the socio-economic evolution of the social economy sector in the Basque Country during the 2008-2014 period of economic crisis. Data have been obtained within a framework of collaboration between university, Basque Government and private sector of the social economy. The results suggest that such entities have evolved better, both in terms of number of enterprises and employment, than the general economy of the Basque Country, while the context of public policies aimed at social economy has worsened over the years. However, in economic terms (measured through the Gross Value Added generated), they have not been able to cope with the crisis in equal conditions to the general economy. The main contribution of this research lies in that, unlike similar studies, it discusses the evolution of the whole sector of the social economy, taking as reference a broad period of the current economic crisis.
Resumo:
The purpose of this study is to develop a decision making system to evaluate the risks in E-Commerce (EC) projects. Competitive software businesses have the critical task of assessing the risk in the software system development life cycle. This can be conducted on the basis of conventional probabilities, but limited appropriate information is available and so a complete set of probabilities is not available. In such problems, where the analysis is highly subjective and related to vague, incomplete, uncertain or inexact information, the Dempster-Shafer (DS) theory of evidence offers a potential advantage. We use a direct way of reasoning in a single step (i.e., extended DS theory) to develop a decision making system to evaluate the risk in EC projects. This consists of five stages 1) establishing knowledge base and setting rule strengths, 2) collecting evidence and data, 3) determining evidence and rule strength to a mass distribution for each rule; i.e., the first half of a single step reasoning process, 4) combining prior mass and different rules; i.e., the second half of the single step reasoning process, 5) finally, evaluating the belief interval for the best support decision of EC project. We test the system by using potential risk factors associated with EC development and the results indicate that the system is promising way of assisting an EC project manager in identifying potential risk factors and the corresponding project risks.
Resumo:
In many domains when we have several competing classifiers available we want to synthesize them or some of them to get a more accurate classifier by a combination function. In this paper we propose a ‘class-indifferent’ method for combining classifier decisions represented by evidential structures called triplet and quartet, using Dempster's rule of combination. This method is unique in that it distinguishes important elements from the trivial ones in representing classifier decisions, makes use of more information than others in calculating the support for class labels and provides a practical way to apply the theoretically appealing Dempster–Shafer theory of evidence to the problem of ensemble learning. We present a formalism for modelling classifier decisions as triplet mass functions and we establish a range of formulae for combining these mass functions in order to arrive at a consensus decision. In addition we carry out a comparative study with the alternatives of simplet and dichotomous structure and also compare two combination methods, Dempster's rule and majority voting, over the UCI benchmark data, to demonstrate the advantage our approach offers. (A continuation of the work in this area that was published in IEEE Trans on KDE, and conferences)
Resumo:
Use of the Dempster-Shafer (D-S) theory of evidence to deal with uncertainty in knowledge-based systems has been widely addressed. Several AI implementations have been undertaken based on the D-S theory of evidence or the extended theory. But the representation of uncertain relationships between evidence and hypothesis groups (heuristic knowledge) is still a major problem. This paper presents an approach to representing such knowledge, in which Yen’s probabilistic multi-set mappings have been extended to evidential mappings, and Shafer’s partition technique is used to get the mass function in a complex evidence space. Then, a new graphic method for describing the knowledge is introduced which is an extension of the graphic model by Lowrance et al. Finally, an extended framework for evidential reasoning systems is specified.