982 resultados para Z boson
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We present a measurement of the fraction of inclusive W +jets events produced with net charm quantum number 11, denoted W + c-jet, in p collisions at root s = 1.96 TeV using approximately 1 fb(-1) of data collected by the do detector at the Fermilab Tevatron Collider. We identify the W +jets events via the leptonic W boson decays. Candidate W + c-jet events are selected by requiring a jet containing a muon in association with a reconstructed W boson and exploiting the charge correlation between this muon and W boson decay lepton to perform a nearly model-independent background subtraction. We measure the fraction of W + c-jet events in the inclusive W +jets sample for jet PT > 20 GeV and pseudorapidity |eta| < 2.5 to be 0.074 +/- 0.019(stat.) +/-(0.012)(0.014) (syst.), in agreement with theoretical predictions. The probability that background fluctuations could produce the observed fraction of W + c-jet events is estimated to be 2.5 x 10(-4), which corresponds to a 3.5 sigma statistical significance. Published by Elsevier B.V.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We present a study of events with Z bosons and associated jets produced at the Fermilab Tevatron collider in p p collisions at a center of mass energy of 1.96 TeV The data sample consists of nearly 14000 Z/gamma* -> e(+)e(-) candidates corresponding to an integrated luminosity of 0.4 fb(-1) collected with the D circle divide detector. Ratios of the Z/gamma*+ >= n jet cross sections to the total inclusive Z/gamma* cross section have been measured for n = 1-4 jets, and found to be in good agreement with a next-to-leading order QCD calculation and with a tree-level QCD prediction with parton shower simulation and hadronization. Published by Elsevier B.V
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The scope and aim of this work is to describe the two-body interaction mediated by a particle (either the scalar or the gauge boson) within the light-front formulation. To do this, first of all we point out the importance of propagators and Green functions in Quantum Mechanics. Then we project the covariant quantum propagator onto the light front time to get the propagator for scalar particles in these coordinates. This operator propagates the wave function from x(+) = 0 to x(+) > 0. It corresponds to the definition of the time ordering operation in the light front time x(+). We calculate the light-front Green's function for 2 interacting bosons propagating forward in x(+). We also show how to write down the light front Green's function from the Feynman propagator and finally make a generalization to N bosons.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)