706 resultados para Wounds


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enhancement of collagen's physical characteristics has been traditionally approached using various physico-chemical methods frequently compromising cell viability. Microbial transglutaminase (mTGase), a transamidating enzyme obtained from Streptomyces mobaraensis, was used in the cross-linking of collagen-based scaffolds. The introduction of these covalent bonds has previously indicated increased proteolytic and mechanical stability and the promotion of cell colonisation. The hypothesis behind this research is that an enzymatically stabilised collagen scaffold will provide a dermal precursor with enhanced wound healing properties. Freeze-dried scaffolds, with and without the loading of a site-directed mammalian transglutaminase inhibitor to modulate matrix deposition, were applied to full thickness wounds surgically performed on rats’ dorsum and explanted at three different time points (3, 7 and 21 days). Wound healing parameters such as wound closure, epithelialisation, angiogenesis, inflammatory and fibroblastic cellular infiltration and scarring were analysed and quantified using stereological methods. The introduction of this enzymatic cross-linking agent stimulated neovascularisation and epithelialisation resisting wound contraction. Hence, these characteristics make this scaffold a potential candidate to be considered as a dermal precursor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Lower back pain treatment and compensation costs >$80 billion overall in the US. 75% of back pain is due to disc degeneration in the lumbar region of the spine. Current treatment comprises of painkillers and bed rest or as a more radical solution – interbody cage fusion. In the early stages of disc degeneration the patient would benefit from addition of an injectable gel which polymerises in situ to support the degenerated nucleus pulposus. This involves a material which is an analogue of the natural tissue capable of restoring the biomechanical properties of the natural disc. The nucleus pulposus of the intervertebral disc is an example of a natural proteoglycan consisting of a protein core with negatively charged keratin and chondroitin sulphate attached. As a result of the high fixed charge density of the proteoglycan, the matrix exerts an osmotic swelling pressure drawing sufficient water into support the spinal system. Materials and Methods: NaAMPs (sodium 2- acrylamido 2-methyl propane sulphonic acid) and KSPA (potassium 3- sulphopropyl acrylate) were selected as monomers, the sulphonate group being used to mimic the natural sulphate group. These are used in dermal applications involving chronic wounds and have acceptably low cytotoxicity. Other hydrophilic carboxyl, amide and hydroxyl monomers such as 2-hydroxyethyl acrylamide, ß-carboxyethyl acrylate, acryloyl morpholine, and polyethylene glycol (meth)acrylate were used as diluents together with polyethyleneglycol di(meth)acrylate and hydrophilic multifunctional macromers as cross-linker. Redox was the chosen method of polymerisation and a range of initiators were investigated. Components were packaged in two solutions each containing a redox pair. A dual syringe method of injection into the cavity was used, the required time for polymerisation is circa 3-7 minutes. The final materials were tested using a Bohlin CVO Rheometer cycling from 0.5-25Hz at 37oC to measure the modulus. An in-house compression testing method was developed, using dialysis tubing to mimic the cavity, the gels were swelled in solutions of various osmolarity and compressed to ~ 20%. The pre-gel has also been injected into sheep spinal segments for mechanical compression testing to demonstrate the restoration of properties upon use of the gel. Results and Discussion: Two systems resulted using similar monomer compositions but different initiation and crosslinking agents. NaAMPs and KSPA were used together at a ratio of ~1:1 in both systems with 0.25-2% crosslinking agent, diacrylate or methacrylate. The two initiation systems were ascorbic acid/oxone, and N,N,N,N - tetramethylethylenediamine (TEMED)/ potassium persulphate. These systems produced gelation within 3-7 and 3-5 minutes respectively. Storage of the two component systems was shown to be stable for approximately one month after mixing, in the dark, refrigerated at 1-4oC. The gelation was carried out at 37oC. Literature values for the natural disc give elastic constants ranging from 3-8kPa. The properties of the polymer can be tailored by altering crosslink density and monomer composition and are able to match those of the natural disc. It is possible to incorporate a radio-opaque (histodenz) to enable x-ray luminescence during and after injection. At an inclusion level of 5% the gel is clearly visible and polymerisation and mechanical properties are not altered. Conclusion: A two-pac injection system which will polymerise in situ, that can incorporate a radio-opaque, has been developed. This will reinforce the damaged nucleus pulposus in degenerative disc disease restoring adequate hydration and thus biomechanical properties. Tests on sheep spine segments are currently being carried out to demonstrate that a disc containing the gel has similar properties to an intact disc in comparison to one with a damaged nucleus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Naturally-occurring, endogenous electric fields (EFs) have been detected at skin wounds, damaged tissue sites and vasculature. Applied EFs guide migration of many types of cells, including endothelial cells to migrate directionally. Homing of endothelial progenitor cells (EPCs) to an injury site is important for repair of vasculature and also for angiogenesis. However, it has not been reported whether EPCs respond to applied EFs. Aiming to explore the possibility to use electric stimulation to regulate the progenitor cells and angiogenesis, we tested the effects of direct-current (DC) EFs on EPCs. We first used immunofluorescence to confirm the expression of endothelial progenitor markers in three lines of EPCs. We then cultured the progenitor cells in EFs. Using time-lapse video microscopy, we demonstrated that an applied DC EF directs migration of the EPCs toward the cathode. The progenitor cells also align and elongate in an EF. Inhibition of vascular endothelial growth factor (VEGF) receptor signaling completely abolished the EF-induced directional migration of the progenitor cells. We conclude that EFs are an effective signal that guides EPC migration through VEGF receptor signaling in vitro. Applied EFs may be used to control behaviors of EPCs in tissue engineering, in homing of EPCs to wounds and to an injury site in the vasculature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

On the morning of January 5, 1859, at the end of the liturgy in the Orthodox cathedral in Iaşi, the capital of the principality of Moldavia, Father Neofit Scriban addressed the congregation. He had given many sermons in the cathedral; however, on this par tic u lar date Father Neofit faced an unusual audience. Among the faithful who regularly worshipped at the relics of Saint Parascheva, the protector of Moldavia, were the members of the assembly who would decide the future of the principality. They had a specific mission: to elect a new prince, a key figure in their plan to unite Moldavia with the neighboring principality of Wallachia. Father Neofit, a supporter of the unionist cause and fully aware of the significance of the moment, stated: Brethren, Jesus Christ has said that "For where two or three have gathered together in My name, I am there in their midst." You, Brethren, are not two, or three, but a real gathering in the name of God. God is in your midst. You are here in the name of the Romanian nation [and] the Romanian nation is in your midst. On the flag under which you have assembled, the flag of the Romanian nation, great events, the Romanian faith, unity, are written in large letters. The church, which is founded on faith, blesses the flag of this faith⋯. You, Brethren, through the faith of the Romanian nation, by remaining faithful to this flag, will find the same strength as the church [finds] in its own saints. The faith of the Romanian nation was not, is not, and will not be anything else, but the unity of all Romanians in a single state, the only anchor of salvation, the only port in which the national boat could be saved from surrounding waves. You, Brethren, have gathered here in the church of Stephen the Great; looking at the altar that he raised to the God of your parents, I think that, through this [altar], you will be able to enter into the wishes of this hero of our nation. You, [remember that] by leaving this place, you are leaving [in order to fulfill] a great gesture that for many centuries has been lost for us; you are about to elect a successor to this great hero; therefore, as his true sons, you could not be anything other than the true expression of his wishes. Myself, [as] last year, from this altar, I said and I will continue to say that this great hero has told us that "the God of our parents will send us a Redeemer who will heal our wounds and accomplish our wishes." May your chosen leader today be the redeemer expected by the Romanian nation. May he heal its wounds and achieve its wishes. Therefore, Brethren, may your election today be that of a real Messiah of Romania. God and the world are looking at you, the church is blessing you and the whole Romanian nation is waiting for you!1 A few hours after Father Neofit's sermon, the assembly elected Alexandru Ioan Cuza to be the prince of the principality of Moldavia; a few days later, on January 24, 1859, the assembly of the neighboring principality of Wallachia decided that Cuza should also be their prince, thus confirming the unification of the two states. A new country was inscribed on the map of Southeastern Europe, titled "The United Principalities of Wallachia and Moldavia," also known as "The United Romanian Principalities".

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives: The induction of analgesia for many chronic cutaneous lesions requires treatment with an opioid analgesic. In many patients suffering with these wounds such drugs are either contraindicated or shunned because of their association with death. There are now case reports involving over 100 patients with many different types of chronic superficial wounds, which suggest that the topical application of an opioid in a suitable gel leads to a significant reduction in the level of perceived pain. Key findings: Some work has been undertaken to elucidate the mechanisms by which such a reduction is achieved. To date there have been no proven deleterious effects of such an analgesic system upon wound healing. Although morphine is not absorbed through the intact epidermis, an open wound provides no such barrier and for large wounds drug absorption can be problematic. However, for most chronic cutaneous lesions, where data has been gathered, the blood levels of the drug applied ranges from undetectable to below that required for a systemic effect. Summary If proven, the use of opioids in this way would provide adequate analgesia for a collection of wounds, which are difficult to treat in patients who are often vulnerable. Proof of this concept is now urgently required. © 2011 Royal Pharmaceutical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This dissertation explores the role of artillery forward observation teams during the battle of Okinawa (April–June 1945). It addresses a variety of questions associated with this front line artillery support. First, it examines the role of artillery itself in the American victory over the Japanese on Okinawa. Second, it traces the history of the forward observer in the three decades before the end of World War II. Third, it defines the specific role of the forward observation teams during the battle: what they did and how they did it during this three-month duel. Fourth, it deals with the particular problems of the forward observer. These included coordination with the local infantry commander, adjusting to the periodic rotation between the front lines and the artillery battery behind the line of battle, responding to occasional problems with "friendly fire" (American artillery falling on American ground forces), dealing with personnel turnover in the teams (due to death, wounds, and illness), and finally, developing a more informal relationship between officers and enlisted men to accommodate the reality of this recently created combat assignment. Fifth, it explores the experiences of a select group of men who served on (or in proximity to) forward observation teams on Okinawa. Previous scholars and popular historians of the battle have emphasized the role of Marines, infantrymen, and flame-throwing armor. This work offers a different perspective on the battle and it uses new sources as well. A pre-existing archive of interviews with Okinawan campaign forward observer team members conducted in the 1990s forms the core of the oral history component of this research project. The verbal accounts were checked against and supplemented by a review of unit reports obtained from the U.S. National Archives and various secondary sources. The dissertation concludes that an understanding of American artillery observation is critical to a more complete comprehension of the battle of Okinawa. These mid-ranking (and largely middle class) soldiers proved capable of adjusting to the demands of combat conditions. They provide a unique and understudied perspective of the entire battle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

According to the American Podiatric Medical Association, about 15 percent of the patients with diabetes would develop a diabetic foot ulcer. Furthermore, foot ulcerations leads to 85 percent of the diabetes-related amputations. Foot ulcers are caused due to a combination of factors, such as lack of feeling in the foot, poor circulation, foot deformities and the duration of the diabetes. To date, the wounds are inspected visually to monitor the wound healing, without any objective imaging approach to look before the wound’s surface. Herein, a non-contact, portable handheld optical device was developed at the Optical Imaging Laboratory as an objective approach to monitor wound healing in foot ulcer. This near-infrared optical technology is non-radiative, safe and fast in imaging large wounds on patients. The FIU IRB-approved study will involve subjects that have been diagnosed with diabetes by a physician and who have developed foot ulcers. Currently, in-vivo imaging studies are carried out every week on diabetic patients with foot ulcers at two clinical sites in Miami. Near-infrared images of the wound are captured on subjects every week and the data is processed using customdeveloped Matlab-based image processing tools. The optical contrast of the wound to its peripheries and the wound size are analyzed and compared from the NIR and white light images during the weekly systematic imaging of wound healing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present paper discusses the experience of a psychological emergency attendance in Maternidade Escola Januário Cicco (MEJC) in Natal and has as main objective to investigate the limits and possibilities of this practice in offering psychological care to women in abortion situation. The Ministry of Health considers the abortion a serious medical problem in Brazil and acknowledge the repercussions it causes in personal life and between the women’s family, most of all among the younger ones, in fully productive and reproductive age, that if not supported may suffer deep psychological and physical wounds. This research inserts itself in the field of psychological practices in institutions, by many ways, and aim to offer, by different approaches, among then the psychological emergency attendance, a psychological attention at the institutions. This attention refers to a care during the suffering at the time of crisis and in the many ways that the problem is present. The results were analyzed at a heideggerian hermeneutics optics, which search a determined aspect of reality that intends to know/understand, accompanied by the man’s own movement in existence. The cartography and the logbook were chosen in narrative form as a resource to allow the approximation of daily experience. The emergency psychological attendance was realized on curettage setor of MEJC between march of 2013 and february 2014 at tuesdays and Thursdays from 9h to 12h. The existential plot unveiled at this experience showed some possibilities and limits of emergency psychological attendance as studied. Among the possibilities, the emergency attendance helped the women that suffered an abortion to find new meanings, as: realize the need to self-care; see in the attendance a way to cope with the lost or other issues in their life’s; to enlarge the possibilities of her choice; to rethink her sex e reproductive life, and rethink her relationships and life projects. The attendance has proven itself as a health care mechanism showing the women the need to search for the necessary condition to self-care and to question what in that environment was saw as natural. The attendance showed itself as a suitable practice to the health care demand by creating/inventing ways of meet the woman needs. The attendance promoted an opening at the technical horizons of women’s, what was realized when the complaints moved past the physical health. As refered to the limits, some needs was beyond the emergency attendance service and demanded forwarding to regular psychological care or others specialized services. The service was not able to attend all of the demands of the sector. The attendance did not touched the medical staff to its need or made a change in posture to act beyond the technicality. The attendance, although has not made change in this context, was able to show the main difficulties, like the lack on prepare of the medical staff to deal with the abortion past beyond the technical procedure and the precariousness of the infrastructure of the services offered. At last, the attendance represented a shelter to the women in abortion situation, allowing the suffering to have a place.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Advanced therapies combating acute and chronic skin wounds are likely to be brought about using our knowledge of regenerative medicine coupled with appropriately tissue engineered skin substitutes. At the present time, there are no models of an artificial skin that completely replicate normal uninjured skin and they are usually accompanied by fibrotic reactions that result in the production of a scar. Natural biopolymers such as collagen have been a lot investigated as potential source of biomaterial for skin replacement in Tissue Engineering. Collagens are the most abundant high molecular weight proteins in both invertebrate and vertebrate organisms, including mammals, and possess mainly a structural role in connective tissues. From this, they have been elected as one of the key biological materials in tissue regeneration approaches, as skin tissue engineering. In addition, industry is constantly searching for new natural sources of collagen and upgraded methodologies for their production. The most common sources are skin and bone from bovine and porcine origin. However, these last carry high risk of bovine spongiform encephalopathy or transmissible spongiform encephalopathy and immunogenic responses. On the other hand, the increase of jellyfish has led us to consider this marine organism as potential collagen source for tissue engineering applications. In the present study, novel form of acid and pepsin soluble collagen were extracted from dried Rhopilema hispidum jellyfish species in an effort to obtain an alternative and safer collagen. We studied different methods of collagen purification (tissues and experimental procedures). The best collagen yield was obtained using pepsin extraction method (34.16 mg collagen/g of tissue). The isolated collagen was characterized by SDS-polyacrylamide gel electrophoresis and circular dichroism spectroscopy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Burn injuries in the United States account for over one million hospital admissions per year, with treatment estimated at four billion dollars. Of severe burn patients, 30-90% will develop hypertrophic scars (HSc). Current burn therapies rely upon the use of bioengineered skin equivalents (BSEs), which assist in wound healing but do not prevent HSc. HSc contraction occurs of 6-18 months and results in the formation of a fixed, inelastic skin deformity, with 60% of cases occurring across a joint. HSc contraction is characterized by abnormally high presence of contractile myofibroblasts which normally apoptose at the completion of the proliferative phase of wound healing. Additionally, clinical observation suggests that the likelihood of HSc is increased in injuries with a prolonged immune response. Given the pathogenesis of HSc, we hypothesize that BSEs should be designed with two key anti-scarring characterizes: (1) 3D architecture and surface chemistry to mitigate the inflammatory microenvironment and decrease myofibroblast transition; and (2) using materials which persist in the wound bed throughout the remodeling phase of repair. We employed electrospinning and 3D printing to generate scaffolds with well-controlled degradation rate, surface coatings, and 3D architecture to explore our hypothesis through four aims.

In the first aim, we evaluate the impact of elastomeric, randomly-oriented biostable polyurethane (PU) scaffold on HSc-related outcomes. In unwounded skin, native collagen is arranged randomly, elastin fibers are abundant, and myofibroblasts are absent. Conversely, in scar contractures, collagen is arranged in linear arrays and elastin fibers are few, while myofibroblast density is high. Randomly oriented collagen fibers native to the uninjured dermis encourage random cell alignment through contact guidance and do not transmit as much force as aligned collagen fibers. However, the linear ECM serves as a system for mechanotransduction between cells in a feed-forward mechanism, which perpetuates ECM remodeling and myofibroblast contraction. The electrospinning process allowed us to create scaffolds with randomly-oriented fibers that promote random collagen deposition and decrease myofibroblast formation. Compared to an in vitro HSc contraction model, fibroblast-seeded PU scaffolds significantly decreased matrix and myofibroblast formation. In a murine HSc model, collagen coated PU (ccPU) scaffolds significantly reduced HSc contraction as compared to untreated control wounds and wounds treated with the clinical standard of care. The data from this study suggest that electrospun ccPU scaffolds meet the requirements to mitigate HSc contraction including: reduction of in vitro HSc related outcomes, diminished scar stiffness, and reduced scar contraction. While clinical dogma suggests treating severe burn patients with rapidly biodegrading skin equivalents, these data suggest that a more long-term scaffold may possess merit in reducing HSc.

In the second aim, we further investigate the impact of scaffold longevity on HSc contraction by studying a degradable, elastomeric, randomly oriented, electrospun micro-fibrous scaffold fabricated from the copolymer poly(l-lactide-co-ε-caprolactone) (PLCL). PLCL scaffolds displayed appropriate elastomeric and tensile characteristics for implantation beneath a human skin graft. In vitro analysis using normal human dermal fibroblasts (NHDF) demonstrated that PLCL scaffolds decreased myofibroblast formation as compared to an in vitro HSc contraction model. Using our murine HSc contraction model, we found that HSc contraction was significantly greater in animals treated with standard of care, Integra, as compared to those treated with collagen coated-PLCL (ccPLCL) scaffolds at d 56 following implantation. Finally, wounds treated with ccPLCL were significantly less stiff than control wounds at d 56 in vivo. Together, these data further solidify our hypothesis that scaffolds which persist throughout the remodeling phase of repair represent a clinically translatable method to prevent HSc contraction.

In the third aim, we attempt to optimize cell-scaffold interactions by employing an anti-inflammatory coating on electrospun PLCL scaffolds. The anti-inflammatory sub-epidermal glycosaminoglycan, hyaluronic acid (HA) was used as a coating material for PLCL scaffolds to encourage a regenerative healing phenotype. To minimize local inflammation, an anti-TNFα monoclonal antibody (mAB) was conjugated to the HA backbone prior to PLCL coating. ELISA analysis confirmed mAB activity following conjugation to HA (HA+mAB), and following adsorption of HA+mAB to the PLCL backbone [(HA+mAB)PLCL]. Alican blue staining demonstrated thorough HA coating of PLCL scaffolds using pressure-driven adsorption. In vitro studies demonstrated that treatment with (HA+mAB)PLCL prevented downstream inflammatory events in mouse macrophages treated with soluble TNFα. In vivo studies using our murine HSc contraction model suggested positive impact of HA coating, which was partiall impeded by the inclusion of the TNFα mAB. Further characterization of the inflammatory microenvironment of our murine model is required prior to conclusions regarding the potential for anti-TNFα therapeutics for HSc. Together, our data demonstrate the development of a complex anti-inflammatory coating for PLCL scaffolds, and the potential impact of altering the ECM coating material on HSc contraction.

In the fourth aim, we investigate how scaffold design, specifically pore dimensions, can influence myofibroblast interactions and subsequent formation of OB-cadherin positive adherens junctions in vitro. We collaborated with Wake Forest University to produce 3D printed (3DP) scaffolds with well-controlled pore sizes we hypothesized that decreasing pore size would mitigate intra-cellular communication via OB-cadherin-positive adherens junctions. PU was 3D printed via pressure extrusion in basket-weave design with feature diameter of ~70 µm and pore sizes of 50, 100, or 150 µm. Tensile elastic moduli of 3DP scaffolds were similar to Integra; however, flexural moduli of 3DP were significantly greater than Integra. 3DP scaffolds demonstrated ~50% porosity. 24 h and 5 d western blot data demonstrated significant increases in OB-cadherin expression in 100 µm pores relative to 50 µm pores, suggesting that pore size may play a role in regulating cell-cell communication. To analyze the impact of pore size in these scaffolds on scarring in vivo, scaffolds were implanted beneath skin graft in a murine HSc model. While flexural stiffness resulted in graft necrosis by d 14, cellular and blood vessel integration into scaffolds was evident, suggesting potential for this design if employed in a less stiff material. In this study, we demonstrate for the first time that pore size alone impacts OB-cadherin protein expression in vitro, suggesting that pore size may play a role on adherens junction formation affiliated with the fibroblast-to-myofibroblast transition. Overall, this work introduces a new bioengineered scaffold design to both study the mechanism behind HSc and prevent the clinical burden of this contractile disease.

Together, these studies inform the field of critical design parameters in scaffold design for the prevention of HSc contraction. We propose that scaffold 3D architectural design, surface chemistry, and longevity can be employed as key design parameters during the development of next generation, low-cost scaffolds to mitigate post-burn hypertrophic scar contraction. The lessening of post-burn scarring and scar contraction would improve clinical practice by reducing medical expenditures, increasing patient survival, and dramatically improving quality of life for millions of patients worldwide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrostatic interaction is a strong force that attracts positively and negatively charged molecules to each other. Such an interaction is formed between positively charged polycationic polymers and negatively charged nucleic acids. In this dissertation, the electrostatic attraction between polycationic polymers and nucleic acids is exploited for applications in oral gene delivery and nucleic acid scavenging. An enhanced nanoparticle for oral gene delivery of a human Factor IX (hFIX) plasmid is developed using the polycationic polysaccharide, chitosan (Ch), in combination with protamine sulfate (PS) to treat hemophilia B. For nucleic acid scavenging purposes, the development of an effective nucleic acid scavenging nanofiber platform is described for dampening hyper-inflammation and reducing the formation of biofilms.

Non-viral gene therapy may be an attractive alternative to chronic protein replacement therapy. Orally administered non-viral gene vectors have been investigated for more than one decade with little progress made beyond the initial studies. Oral administration has many benefits over intravenous injection including patient compliance and overall cost; however, effective oral gene delivery systems remain elusive. To date, only chitosan carriers have demonstrated successful oral gene delivery due to chitosan’s stability via the oral route. In this study, we increase the transfection efficiency of the chitosan gene carrier by adding protamine sulfate to the nanoparticle formulation. The addition of protamine sulfate to the chitosan nanoparticles results in up to 42x higher in vitro transfection efficiency than chitosan nanoparticles without protamine sulfate. Therapeutic levels of hFIX protein are detected after oral delivery of Ch/PS/phFIX nanoparticles in 5/12 mice in vivo, ranging from 3 -132 ng/mL, as compared to levels below 4 ng/mL in 1/12 mice given Ch/phFIX nanoparticles. These results indicate the protamine sulfate enhances the transfection efficiency of chitosan and should be considered as an effective ternary component for applications in oral gene delivery.

Dying cells release nucleic acids (NA) and NA-complexes that activate the inflammatory pathways of immune cells. Sustained activation of these pathways contributes to chronic inflammation related to autoimmune diseases including systemic lupus erythematosus, rheumatoid arthritis, and inflammatory bowel disease. Studies have shown that certain soluble, cationic polymers can scavenge extracellular nucleic acids and inhibit RNA-and DNA-mediated activation of Toll-like receptors (TLRs) and inflammation. In this study, the cationic polymers are incorporated onto insoluble nanofibers, enabling local scavenging of negatively charged pro-inflammatory species such as damage-associated molecular pattern (DAMP) molecules in the extracellular space, reducing cytotoxicity related to unwanted internalization of soluble cationic polymers. In vitro data show that electrospun nanofibers grafted with cationic polymers, termed nucleic acid scavenging nanofibers (NASFs), can scavenge nucleic acid-based agonists of TLR 3 and TLR 9 directly from serum and prevent the production of NF-ĸB, an immune system activating transcription factor while also demonstrating low cytotoxicity. NASFs formed from poly (styrene-alt-maleic anhydride) conjugated with 1.8 kDa branched polyethylenimine (bPEI) resulted in randomly aligned fibers with diameters of 486±9 nm. NASFs effectively eliminate the immune stimulating response of NA based agonists CpG (TLR 9) and poly (I:C) (TLR 3) while not affecting the activation caused by the non-nucleic acid TLR agonist pam3CSK4. Results in a more biologically relevant context of doxorubicin-induced cell death in RAW cells demonstrates that NASFs block ~25-40% of NF-ĸβ response in Ramos-Blue cells treated with RAW extracellular debris, ie DAMPs, following doxorubicin treatment. Together, these data demonstrate that the formation of cationic NASFs by a simple, replicable, modular technique is effective and that such NASFs are capable of modulating localized inflammatory responses.

An understandable way to clinically apply the NASF is as a wound bandage. Chronic wounds are a serious clinical problem that is attributed to an extended period of inflammation as well as the presence of biofilms. An NASF bandage can potentially have two benefits in the treatment of chronic wounds by reducing the inflammation and preventing biofilm formation. NASF can prevent biofilm formation by reducing the NA present in the wound bed, therefore removing large components of what the bacteria use to develop their biofilm matrix, the extracellular polymeric substance, without which the biofilm cannot develop. The NASF described above is used to show the effect of the nucleic acid scavenging technology on in vitro and in vivo biofilm formation of P. aeruginosa, S. aureus, and S. epidermidis biofilms. The in vitro studies demonstrated that the NASFs were able to significantly reduce the biofilm formation in all three bacterial strains. In vivo studies of the NASF on mouse wounds infected with biofilm show that the NASF retain their functionality and are able to scavenge DNA, RNA, and protein from the wound bed. The NASF remove DNA that are maintaining the inflammatory state of the open wound and contributing to the extracellular polymeric substance (EPS), such as mtDNA, and also removing proteins that are required for bacteria/biofilm formation and maintenance such as chaperonin, ribosomal proteins, succinyl CoA-ligase, and polymerases. However, the NASF are not successful at decreasing the wound healing time because their repeated application and removal disrupts the wound bed and removes proteins required for wound healing such as fibronectin, vibronectin, keratin, and plasminogen. Further optimization of NASF treatment duration and potential combination treatments should be tested to reduce the unwanted side effects of increased wound healing time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Los medios de prensa tienen un rol determinante en la construcción, legitimación y representación de distintas realidades socioculturales, las cuales a su vez generan lineamientos institucionalizados de unas identidades nacionales sobre otras, creando relaciones desiguales en base de prejuicios y estereotipos. Los países vecinos cuentan con historias de unidad y conflictos, pero el tiempo a veces no es suficiente para cerrar viejas heridas, como ocurre con la Guerra del Pacífico (18791883). En este contexto se analizaron las noticias de los medios con mayor injerencia a nivel país: La Razón (Bolivia) y El Mercurio (Chile), donde, por medio de una herramienta metodológica de Análisis Crítico y Complejo del Discurso Verbovisual, se buscó dilucidar los procesos de construcción discursiva de cada Estadonación y confirmar cómo éstos se mantienen a través del tiempo.