832 resultados para Web content adaptation
Resumo:
Background: Although the potential to reduce hospitalisation and mortality in chronic heart failure (CHF) is well reported, the feasibility of receiving healthcare by structured telephone support or telemonitoring is not. Aims: To determine; adherence, adaptation and acceptability to a national nurse-coordinated telephone-monitoring CHF management strategy. The Chronic Heart Failure Assistance by Telephone Study (CHAT). Methods: Triangulation of descriptive statistics, feedback surveys and qualitative analysis of clinical notes. Cohort comprised of standard care plus intervention (SC + I) participants who completed the first year of the study. Results: 30 GPs (70% rural) randomised to SC + I recruited 79 eligible participants, of whom 60 (76%) completed the full 12 month follow-up period. During this time 3619 calls were made into the CHAT system (mean 45.81 SD ± 79.26, range 0-369), Overall there was an adherence to the study protocol of 65.8% (95% CI 0.54-0.75; p = 0.001) however, of the 60 participants who completed the 12 month follow-up period the adherence was significantly higher at 92.3% (95% CI 0.82-0.97, p ≤ 0.001). Only 3% of this elderly group (mean age 74.7 ±9.3 years) were unable to learn or competently use the technology. Participants rated CHAT with a total acceptability rate of 76.45%. Conclusion: This study shows that elderly CHF patients can adapt quickly, find telephone-monitoring an acceptable part of their healthcare routine, and are able to maintain good adherence for a least 12 months. © 2007.
Resumo:
With the growth of the Web, E-commerce activities are also becoming popular. Product recommendation is an effective way of marketing a product to potential customers. Based on a user’s previous searches, most recommendation methods employ two dimensional models to find relevant items. Such items are then recommended to a user. Further too many irrelevant recommendations worsen the information overload problem for a user. This happens because such models based on vectors and matrices are unable to find the latent relationships that exist between users and searches. Identifying user behaviour is a complex process, and usually involves comparing searches made by him. In most of the cases traditional vector and matrix based methods are used to find prominent features as searched by a user. In this research we employ tensors to find relevant features as searched by users. Such relevant features are then used for making recommendations. Evaluation on real datasets show the effectiveness of such recommendations over vector and matrix based methods.
Resumo:
The growing importance and need of data processing for information extraction is vital for Web databases. Due to the sheer size and volume of databases, retrieval of relevant information as needed by users has become a cumbersome process. Information seekers are faced by information overloading - too many result sets are returned for their queries. Moreover, too few or no results are returned if a specific query is asked. This paper proposes a ranking algorithm that gives higher preference to a user’s current search and also utilizes profile information in order to obtain the relevant results for a user’s query.
Resumo:
Search log data is multi dimensional data consisting of number of searches of multiple users with many searched parameters. This data can be used to identify a user’s interest in an item or object being searched. Identifying highest interests of a Web user from his search log data is a complex process. Based on a user’s previous searches, most recommendation methods employ two-dimensional models to find relevant items. Such items are then recommended to a user. Two-dimensional data models, when used to mine knowledge from such multi dimensional data may not be able to give good mappings of user and his searches. The major problem with such models is that they are unable to find the latent relationships that exist between different searched dimensions. In this research work, we utilize tensors to model the various searches made by a user. Such high dimensional data model is then used to extract the relationship between various dimensions, and find the prominent searched components. To achieve this, we have used popular tensor decomposition methods like PARAFAC, Tucker and HOSVD. All experiments and evaluation is done on real datasets, which clearly show the effectiveness of tensor models in finding prominent searched components in comparison to other widely used two-dimensional data models. Such top rated searched components are then given as recommendation to users.
Resumo:
Web 2.0 technology and concepts are being used increasingly by organisations to enhance knowledge, efficiency, engagement and reputation. Understanding the concepts of Web 2.0, its characteristics, and how the technology and concepts can be adopted, is essential to successfully reap the potential benefits. In fact, there is a debate about using the Web 2.0 idiom to refer to the concept behind it; however, this term is widely used in literature as well as in industry. In this paper, the definition of Web 2.0 technology, its characteristics and the attributes, will be presented. In addition, the adoption of such technology is further explored through the presentation of two separate case examples of Web 2.0 being used: to enhance an enterprise; and to enhance university teaching. The similarities between these implementations are identified and discussed, including how the findings point to generic principles of adoption.
Resumo:
The high-pressure, cross-cultural, cross-factional and frequently cross-national nature of contemporary negotiation means that there are a number of clements potentially hampering efforts to achieve successful negotiation outcomes from face-to-face interactions. These hindrances include: resource scarcity (for example, finances, technology and facilities), time scarcity, geographical separation, lack of a COnl1110n language and an inability to Inaintain a consistent ongoing dialogue.
Resumo:
Twitter is now well established as the world’s second most important social media platform, after Facebook. Its 140-character updates are designed for brief messaging, and its network structures are kept relatively flat and simple: messages from users are either public and visible to all (even to unregistered visitors using the Twitter website), or private and visible only to approved ‘followers’ of the sender; there are no more complex definitions of degrees of connection (family, friends, friends of friends) as they are available in other social networks. Over time, Twitter users have developed simple, but effective mechanisms for working around these limitations: ‘#hashtags’, which enable the manual or automatic collation of all tweets containing the same #hashtag, as well allowing users to subscribe to content feeds that contain only those tweets which feature specific #hashtags; and ‘@replies’, which allow senders to direct public messages even to users whom they do not already follow. This paper documents a methodology for extracting public Twitter activity data around specific #hashtags, and for processing these data in order to analyse and visualize the @reply networks existing between participating users – both overall, as a static network, and over time, to highlight the dynamic structure of @reply conversations. Such visualizations enable us to highlight the shifting roles played by individual participants, as well as the response of the overall #hashtag community to new stimuli – such as the entry of new participants or the availability of new information. Over longer timeframes, it is also possible to identify different phases in the overall discussion, or the formation of distinct clusters of preferentially interacting participants.
Resumo:
The Web has become a worldwide repository of information which individuals, companies, and organizations utilize to solve or address various information problems. Many of these Web users utilize automated agents to gather this information for them. Some assume that this approach represents a more sophisticated method of searching. However, there is little research investigating how Web agents search for online information. In this research, we first provide a classification for information agent using stages of information gathering, gathering approaches, and agent architecture. We then examine an implementation of one of the resulting classifications in detail, investigating how agents search for information on Web search engines, including the session, query, term, duration and frequency of interactions. For this temporal study, we analyzed three data sets of queries and page views from agents interacting with the Excite and AltaVista search engines from 1997 to 2002, examining approximately 900,000 queries submitted by over 3,000 agents. Findings include: (1) agent sessions are extremely interactive, with sometimes hundreds of interactions per second (2) agent queries are comparable to human searchers, with little use of query operators, (3) Web agents are searching for a relatively limited variety of information, wherein only 18% of the terms used are unique, and (4) the duration of agent-Web search engine interaction typically spans several hours. We discuss the implications for Web information agents and search engines.
Resumo:
Purpose: Web search engines are frequently used by people to locate information on the Internet. However, not all queries have an informational goal. Instead of information, some people may be looking for specific web sites or may wish to conduct transactions with web services. This paper aims to focus on automatically classifying the different user intents behind web queries. Design/methodology/approach: For the research reported in this paper, 130,000 web search engine queries are categorized as informational, navigational, or transactional using a k-means clustering approach based on a variety of query traits. Findings: The research findings show that more than 75 percent of web queries (clustered into eight classifications) are informational in nature, with about 12 percent each for navigational and transactional. Results also show that web queries fall into eight clusters, six primarily informational, and one each of primarily transactional and navigational. Research limitations/implications: This study provides an important contribution to web search literature because it provides information about the goals of searchers and a method for automatically classifying the intents of the user queries. Automatic classification of user intent can lead to improved web search engines by tailoring results to specific user needs. Practical implications: The paper discusses how web search engines can use automatically classified user queries to provide more targeted and relevant results in web searching by implementing a real time classification method as presented in this research. Originality/value: This research investigates a new application of a method for automatically classifying the intent of user queries. There has been limited research to date on automatically classifying the user intent of web queries, even though the pay-off for web search engines can be quite beneficial. © Emerald Group Publishing Limited.