905 resultados para Weather forecasting.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research network “Basic Concepts for Convection Parameterization in Weather Forecast and Climate Models” was organized with European funding (COST Action ES0905) for the period of 2010–2014. Its extensive brainstorming suggests how the subgrid-scale parameterization problem in atmospheric modeling, especially for convection, can be examined and developed from the point of view of a robust theoretical basis. Our main cautions are current emphasis on massive observational data analyses and process studies. The closure and the entrainment–detrainment problems are identified as the two highest priorities for convection parameterization under the mass–flux formulation. The need for a drastic change of the current European research culture as concerns policies and funding in order not to further deplete the visions of the European researchers focusing on those basic issues is emphasized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Factor forecasting models are shown to deliver real-time gains over autoregressive models for US real activity variables during the recent period, but are less successful for nominal variables. The gains are largely due to the Financial Crisis period, and are primarily at the shortest (one quarter ahead) horizon. Excluding the pre-Great Moderation years from the factor forecasting model estimation period (but not from the data used to extract factors) results in a marked fillip in factor model forecast accuracy, but does the same for the AR model forecasts. The relative performance of the factor models compared to the AR models is largely unaffected by whether the exercise is in real time or is pseudo out-of-sample.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The surface response to 11 year solar cycle variations is investigated by analyzing the long-term mean sea level pressure and sea surface temperature observations for the period 1870–2010. The analysis reveals a statistically significant 11 year solar signal over Europe, and the North Atlantic provided that the data are lagged by a few years. The delayed signal resembles the positive phase of the North Atlantic Oscillation (NAO) following a solar maximum. The corresponding sea surface temperature response is consistent with this. A similar analysis is performed on long-term climate simulations from a coupled ocean-atmosphere version of the Hadley Centre model that has an extended upper lid so that influences of solar variability via the stratosphere are well resolved. The model reproduces the positive NAO signal over the Atlantic/European sector, but the lag of the surface response is not well reproduced. Possible mechanisms for the lagged nature of the observed response are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While state-of-the-art models of Earth's climate system have improved tremendously over the last 20 years, nontrivial structural flaws still hinder their ability to forecast the decadal dynamics of the Earth system realistically. Contrasting the skill of these models not only with each other but also with empirical models can reveal the space and time scales on which simulation models exploit their physical basis effectively and quantify their ability to add information to operational forecasts. The skill of decadal probabilistic hindcasts for annual global-mean and regional-mean temperatures from the EU Ensemble-Based Predictions of Climate Changes and Their Impacts (ENSEMBLES) project is contrasted with several empirical models. Both the ENSEMBLES models and a “dynamic climatology” empirical model show probabilistic skill above that of a static climatology for global-mean temperature. The dynamic climatology model, however, often outperforms the ENSEMBLES models. The fact that empirical models display skill similar to that of today's state-of-the-art simulation models suggests that empirical forecasts can improve decadal forecasts for climate services, just as in weather, medium-range, and seasonal forecasting. It is suggested that the direct comparison of simulation models with empirical models becomes a regular component of large model forecast evaluations. Doing so would clarify the extent to which state-of-the-art simulation models provide information beyond that available from simpler empirical models and clarify current limitations in using simulation forecasting for decision support. Ultimately, the skill of simulation models based on physical principles is expected to surpass that of empirical models in a changing climate; their direct comparison provides information on progress toward that goal, which is not available in model–model intercomparisons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flood forecasting increasingly relies on numerical weather prediction forecasts to achieve longer lead times. One of the key difficulties that is emerging in constructing a decision framework for these flood forecasts is what to dowhen consecutive forecasts are so different that they lead to different conclusions regarding the issuing of warnings or triggering other action. In this opinion paper we explore some of the issues surrounding such forecast inconsistency (also known as "Jumpiness", "Turning points", "Continuity" or number of "Swings"). In thsi opinion paper we define forecast inconsistency; discuss the reasons why forecasts might be inconsistent; how we should analyse inconsistency; and what we should do about it; how we should communicate it and whether it is a totally undesirable property. The property of consistency is increasingly emerging as a hot topic in many forecasting environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We evaluate a number of real estate sentiment indices to ascertain current and forward-looking information content that may be useful for forecasting demand and supply activities. Analyzing the dynamic relationships within a Vector Auto-Regression (VAR) framework and using the quarterly US data over 1988-2010, we test the efficacy of several sentiment measures by comparing them with other coincident economic indicators. Overall, our analysis suggests that the sentiment in real estate convey valuable information that can help predict changes in real estate returns. These findings have important implications for investment decisions, from consumers' as well as institutional investors' perspectives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Satellite-based (e.g., Synthetic Aperture Radar [SAR]) water level observations (WLOs) of the floodplain can be sequentially assimilated into a hydrodynamic model to decrease forecast uncertainty. This has the potential to keep the forecast on track, so providing an Earth Observation (EO) based flood forecast system. However, the operational applicability of such a system for floods developed over river networks requires further testing. One of the promising techniques for assimilation in this field is the family of ensemble Kalman (EnKF) filters. These filters use a limited-size ensemble representation of the forecast error covariance matrix. This representation tends to develop spurious correlations as the forecast-assimilation cycle proceeds, which is a further complication for dealing with floods in either urban areas or river junctions in rural environments. Here we evaluate the assimilation of WLOs obtained from a sequence of real SAR overpasses (the X-band COSMO-Skymed constellation) in a case study. We show that a direct application of a global Ensemble Transform Kalman Filter (ETKF) suffers from filter divergence caused by spurious correlations. However, a spatially-based filter localization provides a substantial moderation in the development of the forecast error covariance matrix, directly improving the forecast and also making it possible to further benefit from a simultaneous online inflow error estimation and correction. Additionally, we propose and evaluate a novel along-network metric for filter localization, which is physically-meaningful for the flood over a network problem. Using this metric, we further evaluate the simultaneous estimation of channel friction and spatially-variable channel bathymetry, for which the filter seems able to converge simultaneously to sensible values. Results also indicate that friction is a second order effect in flood inundation models applied to gradually varied flow in large rivers. The study is not conclusive regarding whether in an operational situation the simultaneous estimation of friction and bathymetry helps the current forecast. Overall, the results indicate the feasibility of stand-alone EO-based operational flood forecasting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The high computational cost of calculating the radiative heating rates in numerical weather prediction (NWP) and climate models requires that calculations are made infrequently, leading to poor sampling of the fast-changing cloud field and a poor representation of the feedback that would occur. This paper presents two related schemes for improving the temporal sampling of the cloud field. Firstly, the ‘split time-stepping’ scheme takes advantage of the independent nature of the monochromatic calculations of the ‘correlated-k’ method to split the calculation into gaseous absorption terms that are highly dependent on changes in cloud (the optically thin terms) and those that are not (optically thick). The small number of optically thin terms can then be calculated more often to capture changes in the grey absorption and scattering associated with cloud droplets and ice crystals. Secondly, the ‘incremental time-stepping’ scheme uses a simple radiative transfer calculation using only one or two monochromatic calculations representing the optically thin part of the atmospheric spectrum. These are found to be sufficient to represent the heating rate increments caused by changes in the cloud field, which can then be added to the last full calculation of the radiation code. We test these schemes in an operational forecast model configuration and find a significant improvement is achieved, for a small computational cost, over the current scheme employed at the Met Office. The ‘incremental time-stepping’ scheme is recommended for operational use, along with a new scheme to correct the surface fluxes for the change in solar zenith angle between radiation calculations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There has been a significant increase in the skill and resolution of numerical weather prediction models (NWPs) in recent decades, extending the time scales of useful weather predictions. The land-surface models (LSMs) of NWPs are often employed in hydrological applications, which raises the question of how hydrologically representative LSMs really are. In this paper, precipitation (P), evaporation (E) and runoff (R) from the European Centre for Medium-Range Weather Forecasts (ECMWF) global models were evaluated against observational products. The forecasts differ substantially from observed data for key hydrological variables. In addition, imbalanced surface water budgets, mostly caused by data assimilation, were found on both global (P-E) and basin scales (P-E-R), with the latter being more important. Modeled surface fluxes should be used with care in hydrological applications and further improvement in LSMs in terms of process descriptions, resolution and estimation of uncertainties is needed to accurately describe the land-surface water budgets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Weather is frequently used in music to frame events and emotions, yet quantitative analyses are rare. From a collated base set of 759 weather-related songs, 419 were analysed based on listings from a karaoke database. This article analyses the 20 weather types described, frequency of occurrence, genre, keys, mimicry, lyrics and songwriters. Vocals were the principal means of communicating weather: sunshine was the most common, followed by rain, with weather depictions linked to the emotions of the song. Bob Dylan, John Lennon and Paul McCartney wrote the most weather-related songs, partly following their experiences at the time of writing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A basic data requirement of a river flood inundation model is a Digital Terrain Model (DTM) of the reach being studied. The scale at which modeling is required determines the accuracy required of the DTM. For modeling floods in urban areas, a high resolution DTM such as that produced by airborne LiDAR (Light Detection And Ranging) is most useful, and large parts of many developed countries have now been mapped using LiDAR. In remoter areas, it is possible to model flooding on a larger scale using a lower resolution DTM, and in the near future the DTM of choice is likely to be that derived from the TanDEM-X Digital Elevation Model (DEM). A variable-resolution global DTM obtained by combining existing high and low resolution data sets would be useful for modeling flood water dynamics globally, at high resolution wherever possible and at lower resolution over larger rivers in remote areas. A further important data resource used in flood modeling is the flood extent, commonly derived from Synthetic Aperture Radar (SAR) images. Flood extents become more useful if they are intersected with the DTM, when water level observations (WLOs) at the flood boundary can be estimated at various points along the river reach. To illustrate the utility of such a global DTM, two examples of recent research involving WLOs at opposite ends of the spatial scale are discussed. The first requires high resolution spatial data, and involves the assimilation of WLOs from a real sequence of high resolution SAR images into a flood model to update the model state with observations over time, and to estimate river discharge and model parameters, including river bathymetry and friction. The results indicate the feasibility of such an Earth Observation-based flood forecasting system. The second example is at a larger scale, and uses SAR-derived WLOs to improve the lower-resolution TanDEM-X DEM in the area covered by the flood extents. The resulting reduction in random height error is significant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The statistical properties and skill in predictions of objectively identified and tracked cyclonic features (frontal waves and cyclones) are examined in MOGREPS-15, the global 15-day version of the Met Office Global and Regional Ensemble Prediction System (MOGREPS). The number density of cyclonic features is found to decline with increasing lead-time, with analysis fields containing weak features which are not sustained past the first day of the forecast. This loss of cyclonic features is associated with a decline in area averaged enstrophy with increasing lead time. Both feature number density and area averaged enstrophy saturate by around 7 days into the forecast. It is found that the feature number density and area averaged enstrophy of forecasts produced using model versions that include stochastic energy backscatter saturate at higher values than forecasts produced without stochastic physics. The ability of MOGREPS-15 to predict the locations of cyclonic features of different strengths is evaluated at different spatial scales by examining the Brier Skill (relative to the analysis climatology) of strike probability forecasts: the probability that a cyclonic feature center is located within a specified radius. The radius at which skill is maximised increases with lead time from 650km at 12h to 950km at 7 days. The skill is greatest for the most intense features. Forecast skill remains above zero at these scales out to 14 days for the most intense cyclonic features, but only out to 8 days when all features are included irrespective of intensity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

4-Dimensional Variational Data Assimilation (4DVAR) assimilates observations through the minimisation of a least-squares objective function, which is constrained by the model flow. We refer to 4DVAR as strong-constraint 4DVAR (sc4DVAR) in this thesis as it assumes the model is perfect. Relaxing this assumption gives rise to weak-constraint 4DVAR (wc4DVAR), leading to a different minimisation problem with more degrees of freedom. We consider two wc4DVAR formulations in this thesis, the model error formulation and state estimation formulation. The 4DVAR objective function is traditionally solved using gradient-based iterative methods. The principle method used in Numerical Weather Prediction today is the Gauss-Newton approach. This method introduces a linearised `inner-loop' objective function, which upon convergence, updates the solution of the non-linear `outer-loop' objective function. This requires many evaluations of the objective function and its gradient, which emphasises the importance of the Hessian. The eigenvalues and eigenvectors of the Hessian provide insight into the degree of convexity of the objective function, while also indicating the difficulty one may encounter while iterative solving 4DVAR. The condition number of the Hessian is an appropriate measure for the sensitivity of the problem to input data. The condition number can also indicate the rate of convergence and solution accuracy of the minimisation algorithm. This thesis investigates the sensitivity of the solution process minimising both wc4DVAR objective functions to the internal assimilation parameters composing the problem. We gain insight into these sensitivities by bounding the condition number of the Hessians of both objective functions. We also precondition the model error objective function and show improved convergence. We show that both formulations' sensitivities are related to error variance balance, assimilation window length and correlation length-scales using the bounds. We further demonstrate this through numerical experiments on the condition number and data assimilation experiments using linear and non-linear chaotic toy models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Annual losses of cocoa in Ghana to mirids are significant. Therefore, accurate timing of insecticide application is critical to enhance yields. However, cocoa farmers often lack information on the expected mirid population for each season to enable them to optimise pesticide use. This study assessed farmers’ knowledge and perceptions of mirid control and their willingness to use forecasting systems informing them of expected mirid peaks and time of application of pesticides. A total of 280 farmers were interviewed in the Eastern and Ashanti regions of Ghana with a structured open and closed ended questionnaire. Most farmers (87%) considered mirids as the most important insect pest on cocoa with 47% of them attributing 30-40% annual crop loss to mirid damage. There was wide variation in the timing of insecticide application as a result of farmers using different sources of information to guide the start of application. The majority of farmers (56%) do not have access to information on the type, frequency and timing of insecticides to use. However, respondents who are members of farmer groups had better access to such information. Extension officers were the preferred channel for information transfer to farmers with 72% of farmers preferring them to other available methods of communication. Almost all the respondents (99%) saw the need for a comprehensive forecasting system to help farmers manage cocoa mirids. The importance of accurate timing for mirid control based on forecasted information to farmer groups and extension officers was discussed.