910 resultados para WSN localizzazione indoor Rfid ZigBee Bluetooth UWB UHF
Resumo:
Radio-frequency identification technology (RFID) is a popular modern technology proven to deliver a range of value-added benefits to achieve system and operational efficiency, as well as cost-effectiveness. The operational characteristics of RFID outperform barcodes in many aspects. Despite its well-perceived benefits, a definite rationale for larger scale adoption is still not so promising. One of the key reasons is high implementation cost, especially the cost of tags for applications involving item-level tagging. This has resulted in the development of chipless RFID tags which cost much less than conventional chip-based tags. Despite the much lower tag cost, the uptake of chipless RFID system in the market is still not as widespread as predicted by RFID experts. This chapter explores the value-added applications of chipless RFID system to promote wider adoption. The chipless technology's technical and operational characteristics, benefits, limitations and current uses will also be examined. The merit of this chapter is to contribute fresh propositions to the promising applications of chipless RFID to increase its adoption in the industries that are currently not (or less popular in) utilising it, such as retail, logistics, manufacturing, healthcare, and service sectors. © 2013, IGI Global.
Resumo:
Radio-frequency identification technology (RFID) is a popular modern technology proven to deliver a range of value-added benefits to achieve system and operational efficiency, as well as cost-effectiveness. The operational characteristics of RFID outperform barcodes in many aspects. One of the main challenges for RFID adoption is proving its ability to improve competitiveness. In this paper, we examine multiple real-world examples where RFID technology has been demonstrated to provide significant benefits to industry competitiveness, and also to enhance human experience in the service sector. This paper will explore and survey existing value-added applications of RFID systems in industry and the service sector, with particular focus on applications in retail, logistics, manufacturing, healthcare, leisure and the public sector. © 2012 AICIT.
Resumo:
Radio Frequency Identification (RFID) has been identified as a crucial technology for the modern 21st century knowledge-based economy. Some businesses have realised benefits of RFID adoption through improvements in operational efficiency, additional cost savings, and opportunities for higher revenues. RFID research in warehousing operations has been less prominent than in other application domains. To investigate how RFID technology has had an impact in warehousing, a comprehensive analysis of research findings available from articles through leading scientific article databases has been conducted. Articles from years 1995 to 2010 have been reviewed and analysed with respect to warehouse operations, RFID application domains, benefits achieved and obstacles encountered. Four discussion topics are presented covering RFID in warehousing focusing on its applications, perceived benefits, obstacles to its adoption and future trends. This is aimed at elucidating the current state of RFID in the warehouse and providing insights for researchers to establish new research agendas and for practitioners to consider and assess the adoption of RFID in warehousing functions. © 2013 Elsevier B.V.
Resumo:
This paper discusses demand and supply chain management and examines how artificial intelligence techniques and RFID technology can enhance the responsiveness of the logistics workflow. This proposed system is expected to have a significant impact on the performance of logistics networks by virtue of its capabilities to adapt unexpected supply and demand changes in the volatile marketplace with the unique feature of responsiveness with the advanced technology, Radio Frequency Identification (RFID). Recent studies have found that RFID and artificial intelligence techniques drive the development of total solution in logistics industry. Apart from tracking the movement of the goods, RFID is able to play an important role to reflect the inventory level of various distribution areas. In today’s globalized industrial environment, the physical logistics operations and the associated flow of information are the essential elements for companies to realize an efficient logistics workflow scenario. Basically, a flexible logistics workflow, which is characterized by its fast responsiveness in dealing with customer requirements through the integration of various value chain activities, is fundamental to leverage business performance of enterprises. The significance of this research is the demonstration of the synergy of using a combination of advanced technologies to form an integrated system that helps achieve lean and agile logistics workflow.
Resumo:
Fierce competition within the third party logistics (3PL) market has developed as providers compete to win customers and enhance their competitive advantage through cost reduction plans and creating service differentiation. 3PL providers are expected to develop advanced technological and logistical service applications that can support cost reduction while increasing service innovation. To enhance competitiveness, this paper proposes the implementation of radio-frequency identification (RFID) enabled returnable transport equipment (RTE) in combination with the consolidation of network assets and cross-docking. RFID enabled RTE can significantly improve network visibility of all assets with continuous real-time data updates. A four-level cyclic model aiding 3PL providers to achieve competitive advantage has been developed. The focus is to reduce assets, increase asset utilisation, reduce RTE cycle time and introduce real-time data in the 3PL network. Furthermore, this paper highlights the need for further research from the 3PL perspective. Copyright © 2013 Inderscience Enterprises Ltd.
Resumo:
Due to vigorous globalisation and product proliferation in recent years, more waste has been produced by the soaring manufacturing activities. This has contributed to the significant need for an efficient waste management system to ensure, with all efforts, the waste is properly treated for recycling or disposed. This paper presents a Decision Support System (DSS) framework, based on Constraint Logic Programming (CLP), for the collection management of industrial waste (of all kinds) and discusses the potential employment of Radio-Frequency Identification Technology (RFID) to improve several critical procedures involved in managing waste collection. This paper also demonstrates a widely distributed and semi-structured network of waste producing enterprises (e.g. manufacturers) and waste processing enterprises (i.e. waste recycling/treatment stations) improving their operations planning by means of using the proposed DSS. The potential RFID applications to update and validate information in a continuous manner to bring value-added benefits to the waste collection business are also presented. © 2012 Inderscience Enterprises Ltd.
Resumo:
This paper details work carried out to verify the dimensional measurement performance of the Indoor GPS (iGPS) system; a network of Rotary-Laser Automatic Theodolites (R-LATs). Initially tests were carried out to determine the angular uncertainties on an individual R-LAT transmitter-receiver pair. A method is presented of determining the uncertainty of dimensional measurement for a three dimensional coordinate measurement machine. An experimental procedure was developed to compare three dimensional coordinate measurements with calibrated reference points. The reference standard used to calibrate these reference points was a fringe counting interferometer with the multilateration technique employed to establish three dimensional coordinates. This is an extension of the established technique of comparing measured lengths with calibrated lengths. The method was found to be practical and able to establish that the expanded uncertainty of the basic iGPS system was approximately 1 mm at a 95% confidence level. Further tests carried out on a highly optimized version of the iGPS system have shown that the coordinate uncertainty can be reduced to 0.25 mm at a 95% confidence level.
Resumo:
Advances in the area of industrial metrology have generated new technologies that are capable of measuring components with complex geometry and large dimensions. However, no standard or best-practice guides are available for the majority of such systems. Therefore, these new systems require appropriate testing and verification in order for the users to understand their full potential prior to their deployment in a real manufacturing environment. This is a crucial stage, especially when more than one system can be used for a specific measurement task. In this paper, two relatively new large-volume measurement systems, the mobile spatial co-ordinate measuring system (MScMS) and the indoor global positioning system (iGPS), are reviewed. These two systems utilize different technologies: the MScMS is based on ultrasound and radiofrequency signal transmission and the iGPS uses laser technology. Both systems have components with small dimensions that are distributed around the measuring area to form a network of sensors allowing rapid dimensional measurements to be performed in relation to large-size objects, with typical dimensions of several decametres. The portability, reconfigurability, and ease of installation make these systems attractive for many industries that manufacture large-scale products. In this paper, the major technical aspects of the two systems are briefly described and compared. Initial results of the tests performed to establish the repeatability and reproducibility of these systems are also presented. © IMechE 2009.
Classification of Paintings by Artist, Movement, and Indoor Setting Using MPEG-7 Descriptor Features
Resumo:
ACM Computing Classification System (1998): I.4.9, I.4.10.
Resumo:
In this study, two linear coplanar array antennas based on Indium Phosphide (InP) substrate are designed, presented and compared in terms of bandwidth and gain. Slot introduction in combination with coplanar structure is investigated, providing enhanced antenna gain and bandwidth at the 60 GHz frequency band. In addition the proposed array antennas are evaluated in terms of integration with a high-speed photodiode and investigated in terms of matching, providing a bandwidth that reaches 2 GHz. Moreover a potential beam forming scenario combined with photonic up-conversion scheme has been proposed. © 2013 IEEE.
Resumo:
Today, the question of how to successfully reduce supply chain costs whilst increasing customer satisfaction continues to be the focus of many firms. It is noted in the literature that supply chain automation can increase flexibility whilst reducing inefficiencies. However, in the dynamic and process driven environment of distribution, there is the absence of a cohesive automation approach to guide companies in improving network competitiveness. This paper aims to address the gap in the literature by developing a three-level framework automation application approach with the assistance of radio frequency identification (RFID) technology and returnable transport equipment (RTE). The first level considers the automation of data retrieval and highlights the benefits of RFID. The second level consists of automating distribution processes such as unloading and assembling orders. As the labour is reduced with the introduction of RFID enabled robots, the balance between automation and labour is discussed. Finally, the third level is an analysis of the decision-making process at network points and the application of cognitive automation to objects. A distribution network scenario is formed and used to illustrate network reconfiguration at each level. The research pinpoints that RFID enabled RTE offers a viable tool to assist supply chain automation. Further research is proposed in particular, the area of cognitive automation to aide with decision-making.
Resumo:
This paper describes the use of Bluetooth and Java-Based technologies in developing a multi-player mobile game in ubiquitous computing, which strongly depends on automatic contextual reconfiguration and context-triggered actions. Our investigation focuses on an extended form of ubiquitous computing which game software developers utilize to develop games for players. We have developed an experimental ubiquitous computing application that provides context-aware services to game server and game players in a mobile distributed computing system. Obviously, contextual services provide useful information in a context-aware system. However, designing a context-aware game is still a daunting task and much theoretical and practical research remains to be done to reach the ubiquitous computing era. In this paper, we present the overall architecture and discuss, in detail, the implementation steps taken to create a Bluetooth and Java based context-aware game. We develop a multi-player game server and prepare the client and server codes in ubiquitous computing, providing adaptive routines to handle connection information requests, logging and context formatting and delivery for automatic contextual reconfiguration and context-triggered actions. © 2010 Binary Information Press.
Resumo:
The Brazilian Environmental Data Collecting System (SBCDA) collects and broadcasts meteorological and environmental data, to be handled by dozens of institutions and organizations. The system space segment, composed by the data collecting satellites, plays an important role for the system operation. To ensure the continuity and quality of these services, efforts are being made to the development of new satellite architectures. Aiming a reduction of size and power consumption, the design of an integrated circuit containing a receiver front-end is proposed, to be embedded in the next SBCDA satellite generations. The circuit will also operate under the requirements of the international data collecting standard ARGOS. This work focuses on the design of an UHF low noise amplifier and mixers in a CMOS standard technology. The specifi- cations are firstly described and the circuit topologies presented. Then the circuit conception is discussed and the design variables derived. Finally, the layout is designed and the final results are commented. The chip will be fabricated in a 130 nm technology from ST Microelectronics.
Resumo:
Lo scopo di questa tesi è valutare l’attività di uptake delle cellule nei confronti di nanoparticelle di silice fluorescenti e il loro possibile effetto citotossico. Per verificare l’attività di uptake delle cellule abbiamo utilizzato 4 diverse linee cellulari tumorali umane e abbiamo studiato il comportamento delle nanoparticelle all’interno delle cellule grazie all’utilizzo del microscopio a fluorescenza, con cui abbiamo potuto valutare se le particelle sono in grado di penetrare nel nucleo, soprattutto ad alte concentrazioni o a lunghi tempi di incubazione. Per questa valutazione abbiamo effettuato incubazioni a concentrazioni crescenti di nanoparticelle e a tempi di incubazione sempre più lunghi. Inoltre, abbiamo coltivato le cellule sia in condizioni di crescita ottimali, addizionando il terreno con FBS, che in condizioni subottimali, senza l’aggiunta di FBS nel terreno, perché abbiamo ipotizzato che le proteine presenti nell’FBS potessero disporsi come una corona esternamente alle cellule, ostacolando l’uptake delle nanoparticelle. Infine, abbiamo valutato se le diverse linee cellulari avessero dei comportamenti diversi nei confronti dell’internalizzazione delle nanoparticelle. Per quanto riguarda la valutazione di un possibile effetto citotossico delle nanoparticelle, invece, abbiamo effettuato dei saggi di vitalità cellulare, anche in questo caso utilizzando 4 linee cellulari differenti. Come per l’analisi in microscopia, abbiamo effettuato l’incubazione a concentrazioni crescenti di nanoparticelle, a tempi di incubazione sempre più lunghi e in condizioni ottimali, aggiungendo FBS al terreno, o subottimali, senza FBS. Queste variazioni nelle condizioni di incubazione erano necessarie per capire se la vitalità cellulare potesse dipendere da un’alta concentrazione di nanoparticelle, da lunghi tempi di incubazione e dalla presenza o assenza di FBS e se l’effetto fosse diverso a seconda della linea cellulare sottoposta al trattamento.