984 resultados para Volcanic ash
Resumo:
The Quaternary Vakinankaratra volcanic field in the central Madagascar highlands consists of scoria cones, lava flows, tuff rings, and maars. These volcanic landforms are the result of processes triggered by intracontinental rifting and overlie Precambrian basement or Neogene volcanic rocks. Infrared-stimulated luminescence (IRSL) dating was applied to 13 samples taken from phreatomagmatic eruption deposits in the Antsirabe–Betafo region with the aim of constraining the chronology of the volcanic activity. Establishing such a chronology is important for evaluating volcanic hazards in this densely populated area. Stratigraphic correlations of eruption deposits and IRSL ages suggest at least five phreatomagmatic eruption events in Late Pleistocene times. In the Lake Andraikiba region, two such eruption layers can be clearly distinguished. The older one yields ages between 109 ± 15 and 90 ± 11 ka and is possibly related to an eruption at the Amboniloha volcanic complex to the north. The younger one gives ages between 58 ± 4 and 47 ± 7 ka and is clearly related to the phreatomagmatic eruption that formed Lake Andraikiba. IRSL ages of a similar eruption deposit directly overlying basement laterite in the vicinity of the Fizinana and Ampasamihaiky volcanic complexes yield coherent ages of 68 ± 7 and 65 ± 8 ka. These ages provide the upper age limit for the subsequently developed Iavoko, Antsifotra, and Fizinana scoria cones and their associated lava flows. Two phreatomagmatic deposits, identified near Lake Tritrivakely, yield the youngest IRSL ages in the region, with respective ages of 32 ± 3 and 19 ± 2 ka. The reported K-feldspar IRSL ages are the first recorded numerical ages of phreatomagmatic eruption deposits in Madagascar, and our results confirm the huge potential of this dating approach for reconstructing the volcanic activity of Late Pleistocene to Holocene volcanic provinces.
Resumo:
Tephra layers preserved within the Greenland ice-cores are crucial for the independent synchronisation of these high-resolution records to other palaeoclimatic archives. Here we present a new and detailed tephrochronological framework for the time period 25,000 e 45,000 a b2k that brings together results from 4 deep Greenland ice-cores. In total, 99 tephra deposits, the majority of which are preserved as cryptotephra, are described from the NGRIP, NEEM, GRIP and DYE-3 records. The major element signatures of single glass shards within these deposits indicate that 93 are basaltic in composition all originating from Iceland. Specifically, 43 originate from Grimsv € otn, 20 are thought to be sourced from the Katla volcanic system and 17 show affinity to the Kverkfj € oll system. Robust geochemical characterisations, independent ages derived from the GICC05 ice-core chronology, and the stratigraphic positions of these deposits relative to the Dansgaard-Oeschger climate events represent a key framework that provides new information on the frequency and nature of volcanic events in the North Atlantic region between GS-3 and GI-12. Of particular importance are 19 tephra deposits that lie on the rapid climatic transitions that punctuate the last glacial period. This framework of well-constrained, time-synchronous tie-lines represents an important step towards the independent synchronisation of marine, terrestrial and ice-core records from the North Atlantic region, in order to assess the phasing of rapid climatic changes during the last glacial period.
Resumo:
Volcanic eruptions contribute to climate variability, but quantifying these contributions has been limited by inconsistencies in the timing of atmospheric volcanic aerosol loading determined from ice cores and subsequent cooling from climate proxies such as tree rings. Here we resolve these inconsistencies and show that large eruptions in the tropics and high latitudes were primary drivers of interannual-to-decadal temperature variability in the Northern Hemisphere during the past 2,500 years. Our results are based on new records of atmospheric aerosol loading developed from high-resolution, multi-parameter measurements from an array of Greenland and Antarctic ice cores as well as distinctive age markers to constrain chronologies. Overall, cooling was proportional to the magnitude of volcanic forcing and persisted for up to ten years after some of the largest eruptive episodes. Our revised timescale more firmly implicates volcanic eruptions as catalysts in the major sixth-century pandemics, famines, and socioeconomic disruptions in Eurasia and Mesoamerica while allowing multi-millennium quantification of climate response to volcanic forcing.
Resumo:
Digitalisat der Ausgabe Lemberg, 1848
Resumo:
by A. Goldfaden. Arr. [for piano] by H. A. Russotta
Resumo:
Vorbesitzer: Eljāqīm Carmoly
Resumo:
Vorbesitzer: Maria Balduin Neesen; Abraham Merzbacher
Resumo:
fon A. Goldfaden
Resumo:
After major volcanic eruptions the enhanced aerosol causes ozone changes due to greater heterogeneous chemistry on the particle surfaces (HET-AER) and from dynamical effects related to the radiative heating of the lower stratosphere (RAD-DYN). We carry out a series of experiments with an atmosphere–ocean–chemistry–climate model to assess how these two processes change stratospheric ozone and Northern Hemispheric (NH) polar vortex dynamics. Ensemble simulations are performed under present day and preindustrial conditions, and with aerosol forcings representative of different eruption strength, to investigate changes in the response behaviour. We show that the halogen component of the HET-AER effect dominates under present-day conditions with a global reduction of ozone (−21 DU for the strongest eruption) particularly at high latitudes, whereas the HET-AER effect increases stratospheric ozone due to N2O5 hydrolysis in a preindustrial atmosphere (maximum anomalies +4 DU). The halogen-induced ozone changes in the present-day atmosphere offset part of the strengthening of the NH polar vortex during mid-winter (reduction of up to −16 m s-1 in January) and slightly amplify the dynamical changes in the polar stratosphere in late winter (+11 m s-1 in March). The RAD-DYN mechanism leads to positive column ozone anomalies which are reduced in a present-day atmosphere by amplified polar ozone depletion (maximum anomalies +12 and +18 DU for present day and preindustrial, respectively). For preindustrial conditions, the ozone response is consequently dominated by RAD-DYN processes, while under present-day conditions, HET-AER effects dominate. The dynamical response of the stratosphere is dominated by the RAD-DYN mechanism showing an intensification of the NH polar vortex in winter (up to +10 m s-1 in January). Ozone changes due to the RAD-DYN mechanism slightly reduce the response of the polar vortex after the eruption under present-day conditions.
Resumo:
Major volcanic eruptions generate widespread ocean cooling, which reduces upper ocean stratification. This effect has the potential to increase nutrient delivery into the euphotic zone and boost biological productivity. Using externally forced last millennium simulations of three climate/Earth System models (Model for Interdisciplinary Research On Climate (MIROC), Community Earth System Model (CESM), and LOch-Vecode-Ecbilt-CLio-agIsm Model (LOVECLIM)), we test the hypothesis that large volcanic eruptions intensify nutrient-driven export production. It is found that strong volcanic radiative forcing enhances the likelihood of eastern Pacific El Niño-like warming in CESM and LOVECLIM. This leads to an initial reduction of nutrients and export production in the eastern equatorial Pacific. However, this initial response reverses after about 3 years in association with La Niña cooling. The resulting delayed enhancement of biological production resembles the multiyear response in MIROC. The model simulations show that volcanic impacts on tropical Pacific dynamics and biogeochemistry persist for several years, thus providing a new source for potential multiyear ecosystem predictability.
Resumo:
At the mid-latitudes of Utopia Planitia (UP), Mars, a suite of spatially-associated landforms exhibit geomorphological traits that, on Earth, would be consistent with periglacial processes and the possible freeze-thaw cycling of water. The suite comprises small-sized polygonally-patterned ground, polygon-junction and -margin pits, and scalloped, rimless depressions. Typically, the landforms incise a dark-toned terrain that is thought to be ice-rich. Here, we investigate the dark-toned terrain by using high resolution images from the HiRISE as well as near-infrared spectral-data from the OMEGA and CRISM. The terrain displays erosional characteristics consistent with a sedimentary nature and near-infrared spectra characterised by a blue slope similar to that of weathered basaltic-tephra. We also describe volcanic terrain that is dark-toned and periglacially-modified in the Kamchatka mountain-range of eastern Russia. The terrain is characterised by weathered tephra inter-bedded with snow, ice-wedge polygons and near-surface excess ice. The excess ice forms in the pore space of the tephra as the result of snow-melt infiltration and, subsequently, in-situ freezing. Based on this possible analogue, we construct a three-stage mechanism that explains the possible ice-enrichment of a broad expanse of dark-toned terrain at the mid-latitudes of UP: (1) the dark-toned terrain accumulates and forms via the regional deposition of sediments sourced from explosive volcanism; (2) the volcanic sediments are blanketed by atmospherically-precipitated (H2O) snow, ice or an admixture of the two, either concurrent with the volcanic-events or between discrete events; and, (3) under the influence of high obliquity or explosive volcanism, boundary conditions tolerant of thaw evolve and this, in turn, permits the migration, cycling and eventual formation of excess ice in the volcanic sediments. Over time, and through episodic iterations of this scenario, excess ice forms to decametres of depth. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Two respirable coal fly ash samples ((LESSTHEQ) 3(mu)m), one from a pressurized fluidized-bed combustion miniplant and one from a conventional combustion power plant, were investigated for physical properties, chemical composition and biological activity. Electron microscopy illustrated irregularity in fluidized-bed combustion fly ash and sphericity in conventional combustion fly ash. Elemental analysis of these samples showed differences in trace elements. Both fly ash samples were toxic in rabbit alveolar macrophage and Chinese hamster ovary cell systems in vitro. The macrophages were more sensitive to toxicity of fly ash than the ovary cells. For measuring the cytotoxicity of fly ash, the most sensitive parameters were adenosine triphosphate in the alveolar macrophage system and viability index in the hamster ovary system. Intact fluidized-bed combustion fly-ash particles showed mutagenicity only in strains TA98 and TA1538 without metabolic activation in the Ames Salmonella assay. No mutagenicity was detected in bioassay of conventional combustion fly ash particles. Solvent extraction yielded more mass from fluidized-bed combustion fly ash than from conventional combustion fly ash. The extracts of fluidized-bed combustion fly ash showed higher mutagenic activity than conventional combustion fly ash. These samples contained direct-acting, frameshift mutagens.^ Fly ash samples collected from the same fluidized-bed source by cyclones, a fabric filter, and a electrostatic precipitator at various temperatures were compared for particle size, toxicity, and mutagenicity. Results demonstrated that the biological activity of coal fly ash were affected by the collection site, device, and temperature.^ Coal fly ash vapor-coated with 1-nitropyrene was developed as a model system to study the bioavailability and recovery of nitroaromatic compounds in fly ash. The effects of vapor deposition on toxicity and mutagenicity of fly ash were examined. The nitropyrene coating did not significantly alter the ash's cytotoxicity. Nitropyrene was bioavailable in the biological media, and a significant percentage was not recovered after the coated fly ash was cultured with alveolar macrophages. 1-Nitropyrene loss increased as the number of macrophages was increased, suggesting that the macrophages are capable of metabolizing or binding 1-nitropyrene present in coal fly ash. ^