935 resultados para Virus Replication
Resumo:
The further development of Taqman quantitative real-time PCR (qPCR) assays for the absolute quantitation of Marek's disease virus serotype 1 (MDV1) and Herpesvirus of turkeys (HVT) viruses is described and the sensitivity and reproducibility of each assay reported. Using plasmid DNA copies, the lower limit of detection was determined to be 5 copies for the MDV1 assay and 75 copies for the HVT assay. Both assays were found to be highly reproducible for Ct values and calculated copy numbers with mean intra- and inter-assay coefficients of variation being less than 5% for Ct and 20% for calculated copy number. The genome copy number of MDV1 and HVT viruses was quantified in PBL and feather tips from experimentally infected chickens, and field poultry dust samples. Parallelism was demonstrated between the plasmid-based standard curves, and standard curves derived from infected spleen material containing both viral and host DNA, allowing the latter to be used for absolute quantification. These methods should prove useful for the reliable differentiation and absolute quantitation of MDV1 and HVT viruses in a wide range of samples.
Resumo:
Cucumber mosaic virus (CMV) was found by reverse transcription polymerase chain reaction (RT-PCR) to be not fully systemic in naturally infected kava (Piper methysticum) plants in Fiji. Twenty-six of 48 samples (54%) from various tissues of three recently infected plants were CMV-positive compared with 7/51 samples (14%) from three long-term infections (plants affected by dieback for more than 1 year). The virus was also found to have a limited ability to move into newly formed stems. CMV was detected in only 2/23 samples taken from re-growth stems arising from known CMV infected/dieback affected plants. Mechanical inoculation experiments conducted in Fiji indicate that the known kava intercrop plants banana (Musa spp.), pineapple (Ananas comosus), peanut (Arachis hypogaea) and the common weed Mikania micrantha are potential hosts for a dieback-causing strain of CMV It was not possible to transmit the virus mechanically to the common kava intercrop plants taro (Colocasia esculenta), Xanthosoma sp., sweet potato (Ipomoea batatas), yam (Dioscorea alata), papaya (Carica papaya) or the weed Momordica charantia. Implications of the results of this research on a possible integrated disease management strategy are discussed.
Capsicum chlorosis virus infecting Capsicum annuum in the East Kimberley region of Western Australia
Resumo:
Capsicum chlorosis virus (CaCV) was detected in field grown Capsicum annuum from Kununurra in northeast Western Australia. Identification of the Kununurra isolate (WA-99) was confirmed using sap transmission to indicator hosts, positive reactions with tospovirus serogroup IV-specific antibodies and CaCV-specific primers, and amino acid sequence comparisons that showed >97% identity with published CaCV nucleocapsid gene sequences. The reactions of indicator hosts to infection with WA-99 often differed from those of the type isolate from Queensland. The virus multiplied best when test plants were grown at warm temperatures. CaCV was not detected in samples collected in a survey of C. annuum crops planted in the Perth Metropolitan area.
Resumo:
Carrot was confirmed as a new natural and experimental host of Watermelon mosaic virus by serology, host reactions and sequence comparisons of the coat protein.
Resumo:
Herpesviral haematopoietic necrosis is a disease of goldfish, Carassius auratus, caused by Cyprinid herpesvirus-2 (CyHV-2) infection. Quantitative PCR was carried out on tissue homogenates from healthy goldfish fingerlings, broodfish, eggs and fry directly sampled from commercial farms, from moribund fish submitted to our laboratory for disease diagnosis, and on naturally-infected CyHV-2 carriers subjected to experimental stress treatments. Healthy fish from 14 of 18 farms were positive with copy numbers ranging from tens to 10(7) copies mu g(-1) DNA extracted from infected fish. Of 118 pools of broodfish tested, 42 were positive. The CyHV-2 was detected in one lot of fry produced from disinfected eggs. Testing of moribund goldfish, in which we could not detect any other pathogens, produced 12 of 30 cases with 10(6)-10(8) copies of CyHV-2 mu g(-1) DNA extracted. Subjecting healthy CyHV-2 carriers to cold shock (22-10 degrees C) but not heat, ammonia or high pH, increased viral copy numbers from mean copy number (+/- SE) of 7.3 +/- 11 to 394 +/- 55 mu g(-1) DNA extracted after 24 h. CyHV-2 is widespread on commercial goldfish farms and outbreaks apparently occur when healthy carriers are subjected to a sharp temperature drop followed by holding at the permissive temperature for the disease.
Resumo:
Fiji leaf gall, caused the Fiji disease virus (genus Fijivirus, family Reoviridae, FDV), is a serious disease of sugarcane, Saccharum officinarum L., in Australia and several other Asia-Pacific countries. In Australia FDV is transmitted only by the planthopper Perkinsiella saccharicida Kirkaldy (Hemiptera: Delphacidae), in a propagative manner. Successful transmission of FDV by single planthoppers confined to individual virus free plants is highly variable, even under controlled conditions. The research reported here addresses two possible sources of this variation: 1) gender, wing form, and life stage of the planthopper; and 2) genotype of the source plant. The acquisition of FDV by macropterous males, macropterous females, brachypterous females, and nymphs of P. saccharicida from infected plants was investigated using reverse transcription-polymerase chain reaction to diagnose FDV infection in the vector. The proportion of individuals infected with FDV was not statistically related to life stage, gender, or adult wing form of the vector. The acquisition of FDV by P. saccharicida from four cultivars of sugarcane was compared to assess the influence of plant genotype on acquisition. Those planthopper populations reared on diseased 'NCo310' plants had twice as many infected planthoppers as those reared on 'Q110', 'WD1', and 'WD2'. Therefore, variation in FDV acquisition in this system is not the result of variation in the gender, wing form and life stage of the P. saccharicida vectors. The cultivar used as the source plant to rear vector populations does affect the proportion of infected planthoppers in a population.
Resumo:
Release of virulent myxoma virus has been a key component of rabbit-control operations in Queensland, Australia, since the 1960s but its use rests on anecdotal reports. During a routine operation to release virulent myxoma virus we found no evidence to support the continued regular use of the technique in south-west Queensland. Radio-tagged rabbits inoculated with virulent myxoma virus contracted the disease but failed to pass enough virus to other rabbits to spread the disease. Rabbits with clinical signs of myxomatosis that were shot were infected with field strain derived from the original laboratory strain released in 1950 rather than the virulent strain that has been released annually. There was no change in rabbit survival or abundance caused by the release. Nevertheless, the release of virulent virus may be useful against isolated pockets of rabbits mainly because field strains are less likely to be present. Such pockets are more common now that rabbit haemorrhagic disease virus is established in Queensland.
Resumo:
Fiji leaf gall (FLG) caused by Sugarcane Fiji disease virus (SCFDV) is transmitted by the planthopper Perkinsiella saccharicida. FLG is managed through the identification and exploitation of plant resistance. The glasshouse-based resistance screening produced inconsistent transmission results and the factors responsible for that are not known. A series of glasshouse trials conducted over a 2-year period was compared to identify the factors responsible for the erratic transmission results. SCFDV transmission was greater when the virus was acquired by the vector from a cultivar that was susceptible to the virus than when the virus was acquired from a resistant cultivar. Virus acquisition by the vector was also greater when the vector was exposed to the susceptible cultivars than when exposed to the resistant cultivar. Results suggest that the variation in transmission levels is due to variation in susceptibility of sugarcane cultivars to SCFDV used for virus acquisition by the vector.
Resumo:
To determine the potential role of flying foxes in transmission cycles of Japanese encephalitis virus (JEV) in Australia, we exposed Pteropus alecto (Megachiroptera: Pteropididae) to JEV via infected Culex annulirostris mosquitoes or inoculation. No flying foxes developed symptoms consistent with JEV infection. Anti-JEV IgG antibodies developed in 6/10 flying foxes exposed to infected Cx. annulirostris and in 5/5 inoculated flying foxes. Low-level viremia was detected by real-time reverse transcriptase polymerase chain reaction in 1/5 inoculated flying foxes and this animal was able to infect recipient mosquitoes. Although viremia was not detected in any of the 10 flying foxes that were exposed to JEV by mosquito bite, two animals infected recipient mosquitoes. Likewise, an inoculated flying fox without detectable viremia infected recipient mosquitoes. Although infection rates in recipient mosquitoes were low, the high population densities in roosting camps, coupled with migratory behavior indicate that flying foxes could play a role in the dispersal of JEV.
Resumo:
The recent 8th Australasian plant virology workshop in Rotorua, New Zealand, discussed the development of a New Zealand database of plant virus and virus-like organisms. Key points of discussion included: (i) the purpose of such a database; (ii) who would benefit from the information in a database; (iii) the scope of a database and its associated collections; (iv) database information and format; and (v) potential funding of such a database. From the workshop and further research, we conclude that the preservation and verification of specimens within the collections and the development of a New Zealand database of plant virus and virus-like organisms is essential. Such a collection will help to fulfil statutory requirements in New Zealand and assist in fulfilling international obligations under the International Plant Protection Convention. Sustaining such a database will assist New Zealand virologists and statutory bodies to undertake scientifically sound research. Establishing reliable records and an interactive database will help to ensure accurate and timely diagnoses of diseases caused by plant viruses and virus-like organisms. Detection of new incursions and their diagnosis will be further enhanced by the use of such reference collections and their associated database. Connecting and associating this information to similar overseas databases would assist international collaborations and allow access to the latest taxonomic and diagnostic resources. Associated scientists working in the areas of plant breeding, export phytosanitary assurance and in the area of the conservation estate would also benefit from access to verified specimens of plant viruses and virus-like organisms. We conclude that funding of a New Zealand database of virus and virus-like organisms and its associated collections should be based partly on Crown funds, as it is a nationally significant biological resource.
Resumo:
Colombian datura virus was identified from the ornamental plant Brugmansia sp., showing leaf mosaic symptoms. The nucleotide sequence of the 3 untranslated region and the amino acid sequence of the 3 portion of the coat protein were 100% identical to those from a Hungarian isolate of the virus. This represents the first record of this virus in Australia.
Resumo:
An outbreak of acute respiratory disease in layers was diagnosed as being of dual nature due to fowlpox and infectious laryngotracheitis using a multidisciplinary approach including virus isolation, histopathology, electron microscopy and polymerase chain reaction (PCR). The diagnosis was based on virus isolation of gallid herpesvirus 1 (GaHV-1) in chicken kidney cells and fowlpox virus (FWPV) in 9-day-old chicken embryonated eggs inoculated via the chorioallantoic membrane. The histopathology of tracheas from dead birds revealed intra-cytoplasmic and intra-nuclear inclusions suggestive of poxvirus and herpesvirus involvement. The presence of FWPV was further confirmed by electron microscopy, PCR and histology. All FWPV isolates contained the long terminal repeats of reticuloendotheliosis virus as demonstrated by PCR. GaHV-1 isolates were detected by PCR and were shown to have a different restriction fragment length polymorphism pattern when compared with the chicken embryo origin SA2 vaccine strain; however, they shared the same pattern with the Intervet chicken embryo origin vaccine strain. This is a first report of dual infection of chickens with GaHV-1 and naturally occurring FWPV with reticuloendotheliosis virus insertions. Further characterization of the viruses was carried out and the results are reported here.
Resumo:
A proposal has been posted on the ICTV website (2011.001aG.N.v1.binomial_sp_names) to replace virus species names by non-Latinized binomial names consisting of the current italicized species name with the terminal word "virus" replaced by the italicized and non-capitalized genus name to which the species belongs. If implemented, the current italicized species name Measles virus, for instance, would become Measles morbillivirus while the current virus name measles virus and its abbreviation MeV would remain unchanged. The rationale for the proposed change is presented.
Resumo:
Cell division, which leads to the birth of two daughter cells, is essential for the growth and development of all organisms. The reproduction occurs in a series of events separated in time, designated as the cell cycle. The cell cycle progression is controlled by the activity of cyclin-dependent kinases (CDK). CDKs pair with cyclins to become catalytically active and phosphorylate a broad range of substrates required for cell cycle progression. In addition to cyclins, CDKs are regulated by inhibitory and activating phosphorylation events, binding to CDK-inhibitory proteins (CKI), and also by subcellular localization. The control of the CDK activity is crucial in preventing unscheduled progression of the cell cycle with mistakes having potentially hazardous consequences, such as uncontrolled proliferation of the cells, a hallmark of cancer. The mammalian cell cycle is a target of several DNA tumor viruses that can deregulate the host s cell cycle with their viral oncoproteins. A human herpesvirus called Kaposi s sarcoma herpesvirus (KSHV) is implicated in the cause of Kaposi s sarcoma (KS) and lymphoproliferative diseases such as primary effusion lymphomas (PEL). KSHV has pirated several cell cycle regulatory genes that it uses to manipulate its host cell and to induce proliferation. Among these gene products is a cellular cyclin D homologue, called viral cyclin (v-cyclin) that can activate cellular CDKs leading to the phosphorylation of multiple target proteins. Intriguingly, PELs that are naturally infected with KSHV consistently express high levels of CDK inhibitor protein p27Kip1 and still proliferate actively. The aim of this study was to investigate v-cyclin complexes and their activity in PELs, and search for an explanation why CKIs, such as p27Kip1 and p21Cip1 are unable to inhibit cell proliferation in this type of lymphoma. In this study, we found that v-cyclin binds to p27Kip1 in PELs, and confirmed this novel interaction also in the overexpression models. We observed that p27Kip1 associated with v-cyclin was also phosphorylated by a v-cyclin-associated kinase and identified cellular CDK6 as the major kinase partner of v-cyclin responsible for this phosphorylation. Analysis of the p27Kip1 residues targeted by v-cyclin-CDK6 revealed that serine 10 (S10) is the major phosphorylation site during the latent phase of the KSHV replication cycle. This phosphorylation led to the relocalization of p27Kip1 to the cytoplasm, where it is unable to inhibit nuclear cyclin-CDK complexes. In the lytic phase of the viral replication cycle, the preferred phosphorylation site on p27Kip1 by v-cyclin-CDK6 changed to threonine 187 (T187). T187 phosphorylation has been shown to lead to ubiquitin-mediated degradation of p27Kip1 and downregulation of p27Kip1 was also observed here. v-cyclin was detected also in complex with p21Cip1, both in overexpression models and in PELs. Phosphorylation of p21Cip1 on serine 130 (S130) site by v-cyclin-CDK6 functionally inactivated p21Cip1 and led to the circumvention of G1 arrest induced by p21Cip1. Moreover, p21Cip1 phosphorylated by v-cyclin-associated kinase showed reduced binding to CDK2, which provides a plausible explanation why p21Cip1 is unable to inhibit cell cycle progression upon v-cyclin expression. Our findings clarify the mechanisms on how v-cyclin evades the inhibition of cell cycle inhibitors and suggests an explanation to the uncontrolled proliferation of KSHV-infected cells.