975 resultados para Vestibular fold
Resumo:
The size of the soil microbial biomass carbon (SMBC) has been proposed as a sensitive indicator for measuring the adverse effects of contaminants on the soil microbial community. In this study of Australian agricultural systems, we demonstrated that field variability of SMBC measured using the fumigation-extraction procedure limited its use as a robust ecotoxicological endpoint. The SMBC varied up to 4-fold across control samples collected from a single field site, due to small-scale spatial heterogeneity in the soil physicochemical environment. Power analysis revealed that large numbers of replicates (3-93) were required to identify 20% or 50% decreases in the size of the SMBC of contaminated soil samples relative to their uncontaminated control samples at the 0.05% level of statistical significance. We question the value of the routine measurement of SMBC as an ecotoxicological endpoint at the field scale, and suggest more robust and predictive microbiological indicators.
Resumo:
In this study, we examined the photosynthetic responses of five common seagrass species from a typical mixed meadow in Torres Strait at a depth of 5–7 m using pulse amplitude modulated (PAM) fluorometry. The photosynthetic response of each species was measured every 2 h throughout a single daily light cycle from dawn (6 am) to dusk (6 pm). PAM fluorometry was used to generate rapid light curves from which measures of electron transport rate (ETRmax), photosynthetic efficiency (α), saturating irradiance (Ek) and light-adapted quantum yield (ΔF/F′m) were derived for each species. The amount of light absorbed by leaves (absorption factor) was also determined for each species. Similar diurnal patterns were recorded among species with 3–4 fold increases in maximal electron rate from dawn to midday and a maintenance of ETRmax in the afternoon that would allow an optimal use of low light by all species. Differences in photosynthetic responses to changes in the daily light regime were also evident with Syringodium isoetifolium showing the highest photosynthetic rates and saturating irradiances suggesting a competitive advantage over other species under conditions of high light. In contrast Halophila ovalis, Halophila decipiens and Halophila spinulosa were characterised by comparatively low photosynthetic rates and minimum light requirements (i.e. low Ek) typical of shade adaptation. The structural makeup of each species may explain the observed differences with large, structurally complex species such as Syringodium isoetifolium and Cymodocea serrulata showing high photosynthetic effciciencies (α) and therefore high-light-adapted traits (e.g. high ETRmax and Ek) compared with the smaller Halophila species positioned lower in the canopy. For the smaller Halophila species these shade-adapted traits are features that optimise their survival during low-light conditions. Knowledge of these characteristics and responses improves our understanding of the underlying causes of changes in seagrass biomass, growth and survival that occur when modifications in light quantity and quality arise from anthropogenic and climatic disturbances that commonly occur in Torres Strait.
Resumo:
A novel technique was developed for the flocculation of marine microalgae commonly used in aquaculture. The process entailed an adjustment of pH of culture to between 10 and 10.6 using NaOH, followed by addition of a non-ionic polymer Magnafloc LT-25 to a final concentration of 0.5 mg L-1. The ensuing flocculate was harvested, and neutralised giving a final concentration factor of between 200- and 800-fold. This process was successfully applied to harvest cells of Chaetoceros calcitrans, C. muelleri, Thalassiosira pseudonana, Attheya septentrionalis, Nitzschia closterium, Skeletonema sp., Tetraselmis suecica and Rhodomonas salina, with efficiencies >=80%. The process was rapid, simple and inexpensive, and relatively cost neutral with increasing volume (cf. concentration by centrifugation). Harvested material was readily disaggregated to single cell suspensions by dilution in seawater and mild agitation. Microscopic examination of the cells showed them to be indistinguishable from corresponding non-flocculated cells. Chlorophyll analysis of concentrates prepared from cultures of Concentrates of T. pseudonana prepared using pH-induced flocculation gave better growth of juvenile Pacific oysters (Crassostrea gigas) than concentrates prepared by ferric flocculation, or centrifuged concentrates using a cream separator or laboratory centrifuge. In follow up experiments, concentrates prepared from 1000 L Chaetoceros muelleri cultures were effective as supplementary diets to improve the growth of juvenile C. gigas and the scallop Pecten fumatus reared under commercial conditions, though not as effective as the corresponding live algae. The experiments demonstrated a proof-of-concept for a commercial application of concentrates prepared by flocculation, especially for use at a remote nursery without on-site mass-algal culture facilities.
Resumo:
The aim of this study is to identify the biochemical mechanism of phosphine toxicity and resistance, using Caenorhabditis elegans as a model organism. To date, the precise mode of phosphine action is unclear. In this report, we demonstrate the following dose-dependent actions of phosphine, in vitro: (1) reduction of ferric iron (Fe3+) to ferrous iron (Fe2+), (2) release of iron from horse ferritin, (3) and the peroxidation of lipid as a result of iron release from ferritin. Using in situ hybridization, we show that the ferritin genes of C. elegans, both ferritin-1 and ferritin-2, are expressed along the digestive tract with greatest expression at the proximal and distal ends. Basal expression of the ferritin-2 gene, as determined by quantitative PCR, is approximately 80 times that of ferritin-1. However, transcript levels of ferritin-1 are induced at least 20-fold in response to phosphine, whereas there is no change in the level of ferritin-2. This resembles the reported pattern of ferritin gene regulation by iron, suggesting that phosphine toxicity may be related to an increase in the level of free iron. Indeed, iron overload increases phosphine toxicity in C. elegans at least threefold. Moreover, we demonstrate that suppression of ferritin-2 gene expression by RNAi, significantly increases sensitivity to phosphine. This study identifies similarities between phosphine toxicity and iron overload and demonstrates that phosphine can trigger iron release from storage proteins, increasing lipid peroxidation, leading to cell injury and/or cell death.
Resumo:
Asia's increasing demand for both tropical and temperate fruit is projected to grow significantly. Compared with most developed countries, the production of temperate fruits (peach, nectarine, plum and apple) has expanded rapidly in China over the past 20 years. In contrast, current production of plums and peaches in neighbouring countries (Thailand and Vietnam) is very low but their fruit enters the market earlier. Thailand and Vietnam have enormous potential to satisfy a market window in the northern hemisphere period from March to May inclusive when there is little or no stone fruit on the Asian market. In Vietnam, fruit is harvested in an immature state to avoid disease and fruit fly problems and consequently lacks size and flavour. Approximately 30-40% of locally produced fruit in Vietnam does not reach market due to disease and poor handling during picking and transport. In Thailand, much of the infrastructure needed to transport, store, process and market temperate fruits successfully are now in place. However, there are currently no cool chain management or quality assurance systems to ensure a fresh product reaches the consumer with minimal deterioration. In Vietnam, growing stone fruit under the traditional system with little or minimal inputs, the farmer may receive between AUD3,000-5,000 per ha. In comparison, under higher input systems incorporating fertiliser, irrigation and pest and disease management, net returns can be increased seven-fold. Strengths and weaknesses of the current supply chains in these two countries are discussed.
Resumo:
Bull sperm plasma and outer acrosomal membranes have been isolated by discontinuous sucrose density gradient centrifugation and Ca2+-ATPase activity has been determined for both the membranes. Pyrene excimer fluorescence and diphenylhexatriene fluorescence polarization studies show that the lipid phase of the sperm plasma membranes is more fluid than the lipids of the outer acrosomal membranes. Approximately, a three fold increase in the cholesterol content has been found in the outer acrosomal membranes as compared to that in the plasma membranes.
Resumo:
Quantitative trait loci (QTL) detection was carried out for adventitious rooting and associated propagation traits in a second-generation outbred Corymbia torelliana x Corymbia citriodora subspecies variegata hybrid family (n=186). The parental species of this cross are divergent in their capacity to develop roots adventitiously on stem cuttings and their propensity to form lignotubers. For the ten traits studied, there was one or two QTL detected, with some QTL explaining large amounts of phenotypic variation (e.g. 66% for one QTL for percentage rooting), suggesting that major effects influence rooting in this cross. Collocation of QTL for many strongly genetically correlated rooting traits to a single region on linkage group 12 suggested pleiotropy. A three locus model was most parsimonious for linkage group 12, however, as differences in QTL position and lower genetic correlations suggested separate loci for each of the traits of shoot production and root initiation. Species differences were thought to be the major source of phenotypic variation for some rooting rate and root quality traits because of the major QTL effects and up to 59-fold larger homospecific deviations (attributed to species differences) relative to heterospecific deviations (attributed to standing variation within species) evident at some QTL for these traits. A large homospecific/heterospecific ratio at major QTL suggested that the gene action evident in one cross may be indicative of gene action more broadly in hybrids between these species for some traits.
Resumo:
Many arthropod predators and parasitoids exhibit either stage-specific or lifetime omnivory, in that they include extra-floral nectar, floral nectar, honeydew or pollen in their immature and/or adult diet. Access to these plant-derived foods can enhance pest suppression by increasing both the individual fitness and local density of natural enemies. Commercial products such as Amino-Feed®, Envirofeast®, and Pred-Feed® can be applied to crops to act as artificial-plant-derived foods. In laboratory and glasshouse experiments we examined the influence of carbohydrate and protein rich Amino-Feed UV® or Amino-Feed, respectively, on the fitness of a predatory nabid bug Nabis kinbergii Reuter (Hemiptera: Nabidae) and bollworm pupal parasitoid Ichneumon promissorius (Erichson) (Hymenoptera: Ichneumonidae). Under the chosen conditions, the provision of either wet or dry residues of Amino-Feed UV had no discernable effect on immediate or longer-term survival and immature development times of N. kinbergii. In contrast, the provision of honey, Amino-Feed plus extrafloral nectar, and extrafloral nectar alone had a marked effect on the longevity of I. promissorius, indicating that they were limited by at least carbohydrates as an energy source, but probably not protein. Compared with a water only diet, the provision of Amino-Feed plus extrafloral nectar increased the longevity of males and females of I. promissorius by 3.0- and 2.4-fold, respectively. Not only did female parasitoids live longer when provided food, but the total number of eggs laid and timing of deposition was affected by diet under the chosen conditions. Notably, females in the water and honey treatments deposited greater numbers of eggs earlier in the trial, but this trend was unable to be sustained over their lifetime. Egg numbers in these treatments subsequently fell below the levels achieved by females in the Amino-Feed plus extrafloral nectar and cotton extrafloral nectar only treatments. Furthermore, there were times when the inclusion of the Amino-Feed was beneficial compared with cotton extrafloral nectar only. Artificial food supplements and plant-derived foods are worthy of further investigation because they have potential to improve the ecosystem service of biological pest control in targeted agroecosystems by providing natural enemies with an alternative source of nutrition, particularly during periods of prey/host scarcity.
Resumo:
Arrest of proliferation is one of the prerequisites for differentiation of cytotrophoblasts into syncytiotrophoblasts, and thus during differentiation telomerase activity, as well as human telomerase reverse transcriptase (hTERT) expression, is down-regulated. Considering this, it is of interest to investigate whether syncytium formation can be delayed by prolonging the expression of telomerase in cytotrophoblasts. BeWo cells were transfected with pLPC-hTERT retroviral vector and the reverse transcription-polymerase chain reaction analysis for hTERT mRNA concentrations in the transfected cells revealed a several-fold increase in hTERT mRNA compared with the cells transfected with empty vector, and this confirmed that the transfection was successful. An increase in the proliferation, as assessed by bromodeoxyuridine incorporation assay, as well as an increase in mRNA and protein concentration of various cyclins and proliferating cell nuclear antigen, was noticed. The effect of hTERT transfection was also assessed after the addition of forskolin to induce differentiation and it was observed that cell–cell fusion was delayed and differentiation did not occur in hTERT-transfected cells. However, the effects seen were only transient as stable transfection was not possible and the cells were undergoing apoptosis after 72 h, which suggested that apart from hTERT other factors might be important for immortalization of BeWo cells.
Resumo:
Over 1 billion ornamental fish comprising more than 4000 freshwater and 1400 marine species are traded internationally each year, with 8-10 million imported into Australia alone. Compared to other commodities, the pathogens and disease translocation risks associated with this pattern of trade have been poorly documented. The aim of this study was to conduct an appraisal of the effectiveness of risk analysis and quarantine controls as they are applied according to the Sanitary and Phytosanitary (SPS) agreement in Australia. Ornamental fish originate from about 100 countries and hazards are mostly unknown; since 2000 there have been 16-fold fewer scientific publications on ornamental fish disease compared to farmed fish disease, and 470 fewer compared to disease in terrestrial species (cattle). The import quarantine policies of a range of countries were reviewed and classified as stringent or non-stringent based on the levels of pre-border and border controls. Australia has a stringent policy which includes pre-border health certification and a mandatory quarantine period at border of 1-3 weeks in registered quarantine premises supervised by government quarantine staff. Despite these measures there have been many disease incursions as well as establishment of significant exotic viral, bacterial, fungal, protozoal and metazoan pathogens from ornamental fish in farmed native Australian fish and free-living introduced species. Recent examples include Megalocytivirus and Aeromonas salmonicida atypical strain. In 2006, there were 22 species of alien ornamental fish with established breeding populations in waterways in Australia and freshwater plants and molluscs have also been introduced, proving a direct transmission pathway for establishment of pathogens in native fish species. Australia's stringent quarantine policies for imported ornamental fish are based on import risk analysis under the SPS agreement but have not provided an acceptable level of protection (ALOP) consistent with government objectives to prevent introduction of pests and diseases, promote development of future aquaculture industries or maintain biodiversity. It is concluded that the risk analysis process described by the Office International des Epizooties under the SPS agreement cannot be used in a meaningful way for current patterns of ornamental fish trade. Transboundary disease incursions will continue and exotic pathogens will become established in new regions as a result of the ornamental fish trade, and this will be an international phenomenon. Ornamental fish represent a special case in live animal trade where OIE guidelines for risk analysis need to be revised. Alternatively, for countries such as Australia with implied very high ALOP, the number of species traded and the number of sources permitted need to be dramatically reduced to facilitate hazard identification, risk assessment and import quarantine controls. Lead papers of the eleventh symposium of the International Society for Veterinary Epidemiology and Economics (ISVEE), Cairns, Australia
Resumo:
A purified preparation of arginine decarboxylase from Cucumis sativus seedlings displayed ornithine decarboxylase activity as well. The two decarboxylase activities associated with the single protein responded differentially to agmatine, putrescine and Pi. While agmatine was inhibitory (50 %) to arginine decarboxylase activity, ornithine decarboxylase activity was stimulated by about 3-fold by the guanido arnine. Agmatine-stimulation of ornithine decarboxylase activity was only observed at higher concentrations of the amine. Inorganic phosphate enhanced arginine decarboxylase activity (2-fold) but ornithine decarboxylase activity was largely uninfluenced. Although both arginine and ornithine decarboxylase activities were inhibited by putrescine, ornithine decarboxylase activity was profoundly curtailed even at 1 mM concentration of the diamine. The enzyme-activated irreversible inhibitor for mammalian ornithine decarboxylase, viz. α-difluoromethyl ornithine, dramatically enhanced arginine decarboxylase activity (3-4 fold), whereas ornithine decarboxylase activity was partially (50%) inhibited by this inhibitor. At substrate level concentrations, the decarboxylation of arginine was not influenced by ornithine and vice-versa. Preliminary evidence for the existence of a specific inhibitor of ornithine decarboxylase activity in the crude extracts of the plant is presented. The above results suggest that these two amino acids could be decarboxylated at two different catalytic sites on a single protein.
Resumo:
Synephrinase, an enzyme catalyzing the conversion of (−)-synephrine into p-hydroxyphenylacetaldehyde and methylamine, was purified to apparent homogeneity from the cell-free extracts of Arthrobacter synephrinum grown on (±)-synephrine as the sole source of carbon and nitrogen. A 40-fold purification was sufficient to produce synephrinase that is apparently homogeneous as judged by native polyacrylamide gel electrophoresis and has a specific activity of 1.8 μmol product formed /min/mg protein. Thus, the enzyme is a relatively abundant enzyme, perhaps comprising as much as 2.5% of the total protein. The enzyme essentially required a sulfhydryl compound for its activity. Metal ions like Mg2+, Ca2+, and Mn2+ stimulated the enzyme activity. Metal chelating agents, thiol reagents, denaturing agents, and metal ions like Zn2+, Hg2+, Ag1+, and Cu2+ inhibited synephrinase activity. Apart from (−)-synephrine, the enzyme acted upon (±)-octopamine and β-methoxysynephrine. Molecular oxygen was not utilized during the course of the reaction. The molecular mass of the enzyme as determined by Sephadex G-200 chromatography, was around 156,000. The enzyme was made up of four identical subunits with a molecular mass of 42,000.
Resumo:
A transamidinase was purified 463-fold from Lathyrus sativus seedlings by affinity chromatography on homoarginine--Sepharose. The enzyme exhibited a wide substrate specificity, and catalysed the reversible transfer of the amidino groups from donors such as arginine, homoarginine and canavanine to acceptors such as lysine, putrescine, agmatine, cadaverine and hydroxylamine. The enzyme could not be detected in the seeds, and attained the highest specific activity in the embryo axis on day 10 after seed germination. Its thiol nature was established by strong inhibition by several thiol blockers and thiol compounds in the presence of ferricyanide. In the absence of an exogenous acceptor, it exhibited weak hydrolytic activity towards arginine. It had apparent mol.wt. 210000, and exhibited Michaelis--Menten kinetics with Km 3.0 mM for arginine. Ornithine competitively inhibited the enzyme, with Ki 1.0 mM in the arginine--hydroxylamine amidino-transfer reaction. Conversion experiments with labelled compounds suggest that the enzyme is involved in homoarginine catabolism during the development of plant embryo to give rise to important amino acids and amine metabolites. Presumptive evidence is also provided for its involvement in the biosynthesis of the guanidino amino acid during seed development. The natural occurrence of arcain in L. sativus and mediation of its synthesis in vitro from agmatine by the transamidinase are demonstrated.
Resumo:
In visual search one tries to find the currently relevant item among other, irrelevant items. In the present study, visual search performance for complex objects (characters, faces, computer icons and words) was investigated, and the contribution of different stimulus properties, such as luminance contrast between characters and background, set size, stimulus size, colour contrast, spatial frequency, and stimulus layout were investigated. Subjects were required to search for a target object among distracter objects in two-dimensional stimulus arrays. The outcome measure was threshold search time, that is, the presentation duration of the stimulus array required by the subject to find the target with a certain probability. It reflects the time used for visual processing separated from the time used for decision making and manual reactions. The duration of stimulus presentation was controlled by an adaptive staircase method. The number and duration of eye fixations, saccade amplitude, and perceptual span, i.e., the number of items that can be processed during a single fixation, were measured. It was found that search performance was correlated with the number of fixations needed to find the target. Search time and the number of fixations increased with increasing stimulus set size. On the other hand, several complex objects could be processed during a single fixation, i.e., within the perceptual span. Search time and the number of fixations depended on object type as well as luminance contrast. The size of the perceptual span was smaller for more complex objects, and decreased with decreasing luminance contrast within object type, especially for very low contrasts. In addition, the size and shape of perceptual span explained the changes in search performance for different stimulus layouts in word search. Perceptual span was scale invariant for a 16-fold range of stimulus sizes, i.e., the number of items processed during a single fixation was independent of retinal stimulus size or viewing distance. It is suggested that saccadic visual search consists of both serial (eye movements) and parallel (processing within perceptual span) components, and that the size of the perceptual span may explain the effectiveness of saccadic search in different stimulus conditions. Further, low-level visual factors, such as the anatomical structure of the retina, peripheral stimulus visibility and resolution requirements for the identification of different object types are proposed to constrain the size of the perceptual span, and thus, limit visual search performance. Similar methods were used in a clinical study to characterise the visual search performance and eye movements of neurological patients with chronic solvent-induced encephalopathy (CSE). In addition, the data about the effects of different stimulus properties on visual search in normal subjects were presented as simple practical guidelines, so that the limits of human visual perception could be taken into account in the design of user interfaces.
Resumo:
Intensive nursery systems are designed to culture mud crab postlarvae through a critical phase in preparation for stocking into growout systems. This study investigated the influence of stocking density and provision of artificial habitat on the yield of a cage culture system. For each of three batches of postlarvae, survival, growth and claw loss were assessed after each of three nursery phases ending at crab instars C1/C2, C4/C5 and C7/C8. Survival through the first phase was highly variable among batches with a maximum survival of 80% from megalops to a mean crab instar of 1.5. Stocking density between 625 and 2300 m-2 did not influence survival or growth in this first phase. Stocking densities tested in phases 2 and 3 were 62.5, 125 and 250 m -2. At the end of phases 2 and 3, there were five instar stages present, representing a more than 20-fold size disparity within the populations. Survival became increasingly density-sensitive following the first phase, with higher densities resulting in significantly lower survival (phase 2: 63% vs. 79%; phase 3: 57% vs. 64%). The addition of artificial habitat in the form of pleated netting significantly improved survival at all densities. The mean instar attained by the end of phase 2 was significantly larger at a lower stocking density and without artificial habitat. No significant effect of density or habitat on harvest size was detected in phase 3. The highest incidence of claw loss was 36% but was reduced by lowering stocking densities and addition of habitat. For intensive commercial production, yield can be significantly increased by addition of a simple net structure but rapidly decreases the longer crablets remain in the nursery.