981 resultados para Uptake kinetics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Isothermal crystallization kinetics in the miscible mixtures of poly(epsilon-caprolactone) (PCL) and poly(styrene-co-acrylonitrile) (SAN) have been investigated as a function of the composition and the crystallization temperature by optical microscopy. The radial growth rates of the spherulites have been described by a kinetic equation including the interaction parameter and the free energy for the formation of secondary crystal nuclei. Fold surface free energies decrease slightly with the increase of SAN content. The experimental findings show that the influence of the glass transition temperature of the mixture, which is related to the chain mobility, on the rate of crystallization predominates over the influence of the surface free energies. This indicates that the glass transition temperature of the mixture should be of more importance, so that the growth rates decrease when the content of the noncrystallizable component increases. In addition, the Flory-Huggins interaction parameter obtained by fitting the kinetic equation with experimental data is questionable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analysis of the nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone) (PEEKK) was performed by using differential scanning calorimetry (DSC). The Avrami equation modified by Jeziorny could describe only the primary stage of nonisothermal crystallization of PEEKK. And, the Ozawa analysis, when applied to this polymer system, failed to describe its nonisothermal crystallization behavior. A new and convenient approach for the nonisothermal crystallization was proposed by combining the Avrami equation with the Ozawa equation. By evaluating the kinetic parameters in this approach, the crystallization behavior of PEEKK was analyzed. According to the Kissinger method, the activation energies were determined to be 189 and 328 kJ/mol for nonisothermal melt and cold crystallization, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kinetics of the polymerization of isoprene with the heterogeneous rare earth catalyst system isopropoxyneodymium dichloride/triethylaluminium (Nd(OPri)Cl-2-AlEt(3)) was examined in a specially designed dilatometer. The rate of polymerization is expressed as R(p) approximate to -d[M]/dt = k'(p)[Nd](1.40)[M]. The main kinetical parameters such as the concentration of active propagating chain, the efficiency of lanthanide catalyst used (ELCU), the absolute rate constant of propagation as well as the average life time of growing chains, were determined at 30 degrees C, 40 degrees C, 45 degrees C and 50 degrees C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The theoretical model[17] of an ultramicroelectrode modified with a redox species film is used as the diagnostic tool to characterize the catalytic oxidation of ascorbic acid at carbon fiber ultramicrodisk electrodes coated with an Eastman-AQ-Os(bpy)(3)(2+) film. The electrocatalytic behavior of ascorbic acid at the ultramicroelectrode modified by an Eastman-AQ polymer containing tris(2,2'-bipyridine) osmium(III/II) as mediators is described. In order to determine the five characteristic currents quantitatively, the radius of the ultramicroelectrode and the concentration of ascorbic acid are varied systematically. The kinetic zone diagram has been used to study the electrocatalytic system. This system with 0.5-2.75 mM ascorbic acid belongs to SR + E case, and the concentration profiles of the catalyst in the film are given in detail. Finally, optimizing the design of catalytic system is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on Jeziorny theory, the kinetics of phase transition of poly(ester-imide) has been determined under non-isothermal condition by using differential scanning calorimetry (DSC). Avrami exponent n, kinetic parameters G(c) and rate constant Z(c) were derived and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cupric (II) ion transfer across the water/nitrobenzene interface facilitated by 2,2'-biqulnoline was investigated by cyclic voltammtry. Transfer process was controlled by diffusion. At [BQ](NB)>>[Cu2+](W), transfer ion was found to be 1:2 Cu2+-biquinoline

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The prediction, based on unsteady diffusion kinetics, of the enhancement of reactivity and incorporation of 1-hexadecene in its copolymerization with propylene on adding a small amount of ethylene (increase from 5,2 mol-% to 10,8 mol-% when 2% of ethylene was added, and to 16,1 mol-% when 5% was added) was verified in the terpolymerization of propylene/1-hexadecene/ethylene on a commercial Solvay-type delta-TiCl3 catalyst. The catalyst efficiency was thus also increased. These augmentations originate from the increase in diffusion coefficient of 1-hexadecene at the catalyst surface when the PP crystallinity decreases on introduction of ethylene. Calculation based on unsteady diffusion kinetics showed that the order of diffusion coefficients ethylene > propylene > 1-hexadecene is reversed as the monomer concentration increases when the monomers are not at their equilibrium concentration. Sequence distribution as determined by means of C-13 NMR revealed a tendency of blocky structure rather than a Bernoullian one. The terpolymer compositions obtained by means of an IR method developed in this work conform rather well with the NMR results. Results in this work not only support the unsteady diffusion kinetics but also provide a new route to prepare olefinic copolymer rubbers with heterogeneous titanium catalysts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrolysis kinetics of atropine sulphate has been investigated by cyclic voltammetry at the water/nitrobenzene interface. The transfer process is diffusion controlled and the transfer species is a 1:1 proton-atropine complex. Two main factors, pH and temperature, which have notable effects on the hydrolysis rate, are illustrated. The most suitable pH for atropine to be preserved in aqueous solution and related parameters were estimated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystallization kinetics in mixtures of poly(epsilon-caprolactone) (PCL) and poly(styrene-co-acrylonitrile) (SAN) has been investigated as the function of composition and crystallization temperature. The isothermal growth rates of PCL spherulites decrease with increasing concentration of SAN. Because of the miscibility of PCL/SAN mixtures, the radial growth rates of the spherulites are described by a kinetic equation including the interaction parameter and the free energy for the formation of crystal nuclei. The interaction parameter obtained from the fitting of the kinetic equation with experimental data is in good agreement with that obtained from melting point depression. Folding surface free energies decrease with the increase of SAN concentration. In light of these results, it is suggested that, for the PCL/SAN mixtures, the noncrystallizable SAN polymer reduces the mobility of crystallizable PCL polymer so that the growth rates decrease with the increase of noncrystallizable component fraction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reaction rates of MTPP with oxygen in air are Inas than that with pure oxygen, the ratio is roughly the same as to the partial presence of imygen in air, The influences of S-ligand etbanethiol and O- litand Vc on the above Systems have also been investigated, the former makes the MP hands having more changes and the reaction rate constants becoming greater, the latter has less influence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The equation of the potential-current curve for the ion transfer across the liquid/liquid interface during the linear current scanning has been derived theoretically. A method to calculate the kinetics parameters for the ion transfer by the way of linear current scanning is presented. The transfer of TPAs~+ ions, which is a typical basic electrolyte ion usually used in liquld/liquid interface electrochemistry, was practically investigated at the water/nitrobenzene interface.