952 resultados para Underground excavation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this supplemental project was to collect invaluable data from the large-scale construction sites of Egnatia Odos motorway needed to validate a novel automated vision-tracking method created under the parent grant. For this purpose, one US graduate and three US undergraduate students traveled to Greece for 4 months and worked together with 2 Greek graduate students of the local faculty collaborator. This team of students monitored project activities and scheduled data collection trips on a daily basis, setup a mobile video data collection lab on the back of a truck, and drove to various sites every day to collect hundreds of hours of video from multiple cameras on a large variety of activities ranging from soil excavation to bridge construction. The US students were underrepresented students from minority groups who had never visited a foreign country. As a result, this trip was a major life experience to them. They learned how to live in a non-English speaking country, communicate with Greek students, workers and engineers. They lead a project in a very unfamiliar environment, troubleshoot myriad problems that hampered their progress daily and, above all, how to collaborate effectively and efficiently with other cultures. They returned to the US more mature, with improved leadership and problem-solving skills and a wider perspective of their profession.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An innovative technique based on optical fibre sensing that allows continuous strain measurement has recently been introduced in structural health monitoring. Known as Brillouin Optical Time-Domain Reflectometry (BOTDR), this distributed optical fibre sensing technique allows measurement of strain along the full length (up to 10km) of a suitably installed optical fibre. Examples of recent implementations of BOTDR fibre optic sensing in piles are described in this paper. Two examples of distributed optical fibre sensing in piles are demonstrated using different installation techniques. In a load bearing pile, optical cables were attached along the reinforcing bars by equally spaced spot gluing to measure the axial response of pile to ground excavation induced heave and construction loading. Measurement of flexural behaviour of piles is demonstrated in the instrumentation of a secant piled wall where optical fibres were embedded in the concrete by simple endpoint clamping. Both methods have been verified via laboratory works. © 2009 IOS Press.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper explores the influence of the piled foundation on the building response to excavation-induced deformations. The influence of the type of foundation, the position of positive and negative skin friction zones, and the flexibility of the piles is evaluated with respect to both horizontal and vertical soil deformations. Case histories from the Netherlands are included from Amsterdam (North South Line) and Rotterdam (a building adjacent to the Willemspoortunnel). Most of the buildings are founded on timber piles ranging in length from 12-17 m. Conclusions are drawn about the interaction between the piled building and the soil deformation. © 2012 Taylor & Francis Group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deep excavations and tunnelling can cause ground movements that affect buildings within their influence zone. The current approach for building damage assessment is based on tensile strains estimated from the deflection ratio and the horizontal strains at the building foundation. For tunnelling-induced deformations, Potts & Addenbrooke (1997) suggested a method to estimate the building response from greenfield conditions using the relative building stiffness. However, there is not much guidance for building response to excavation-induced movements. This paper presents a numerical study on the response of buildings to movements caused by deep excavations in soft clays, and proposes design guidance to estimate the deflection ratio and the horizontal strains of the building from the building stiffness. © 2012 Taylor & Francis Group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are several reasons for monitoring of underground structures and they have already been discussed many times, e.g. from the view of ageing or state after accidental event like flooding of Prague metro in 2002. Monitoring of Prague metro is realized in the framework of international research project sponsored by ESF-S3T. The monitoring methods used in Prague are either classical one or new or developing one. The reason for different monitoring methods is the different precision of each method and also for cross-checking between them and their evaluation. Namely we use convergence, tiltmetres, crackmetres, geophysical methods, laser scanning, computer vision and finally installation of MEMS monitoring devices. In the paper more details of each method and obtained results will be presented. The monitoring methods are complemented by wireless data collection and transfer for real-time monitoring. © 2012 Taylor & Francis Group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The twin-tunnel construction of the Jubilee Line Extension tunnels beneath St James's Park was simulated using coupled-consolidation finite-element analyses. The effect of defining different permeabilities for the final consolidation stage was investigated, and the performance of a fissure softening model was also evaluated. The analyses suggested an unexpectedly high permeability anisotropy for soil around the tunnel crown, possibly due to stress-induced permeability changes, or low-permeability laminations. Also, the permeability profile and lining conductivity were found to differ between the tunnels. Inclusion of the fissure model gave a narrower settlement trough, more alike that in the field, by preferentially softening simple shear behaviour. Long-term settlements at the site continue to increase at an unexpectedly high rate, suggesting the possibility of creep or unexpected soil softening during excavation. © 2012 Taylor & Francis Group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ground movements induced by the construction of supported excavation systems are generally predicted by empirical/semi-empirical methods in the design stage. However, these methods cannot account for the site-specific conditions and for information that becomes available as an excavation proceeds. A Bayesian updating methodology is proposed to update the predictions of ground movements in the later stages of excavation based on recorded deformation measurements. As an application, the proposed framework is used to predict the three-dimensional deformation shapes at four incremental excavation stages of an actual supported excavation project. © 2011 Taylor & Francis Group, London.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ground movements induced by the construction of supported excavation systems are generally predicted in the design stage by empirical/semi-empirical methods. However, these methods cannot account for the site-specific conditions and for information that become available as an excavation proceeds. A Bayesian updating methodology is proposed to update the predictions of ground movements in the later stages of excavation based on recorded deformation measurements. As an application, the proposed framework is used to predict the three-dimensional deformation shapes at four incremental excavation stages of an actual supported excavation project. Copyright © ASCE 2011.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a Bayesian probabilistic framework to assess soil properties and model uncertainty to better predict excavation-induced deformations using field deformation data. The potential correlations between deformations at different depths are accounted for in the likelihood function needed in the Bayesian approach. The proposed approach also accounts for inclinometer measurement errors. The posterior statistics of the unknown soil properties and the model parameters are computed using the Delayed Rejection (DR) method and the Adaptive Metropolis (AM) method. As an application, the proposed framework is used to assess the unknown soil properties of multiple soil layers using deformation data at different locations and for incremental excavation stages. The developed approach can be used for the design of optimal revisions for supported excavation systems. © 2010 ASCE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prediction of the long-term settlement of clay soils over tunnels requires a knowledge of the permeability of the soil and of the tunnel lining; however, determination of the lining permeability in the field is difficult. An important contributor to this problem is the lack of knowledge concerning the permeability of the grout between the lining and the soil. This paper presents the results of tests to characterise the properties of grout samples from London Underground tunnels, investigating permeability, porosity, micro structure and composition. The tests revealed that the newer grout was impermeable relative to the surrounding clay. However, the older samples showed much greater permeabilities and an altered grout composition, suggesting that degradation had taken place. Exposure to groundwater appeared to have caused carbonation and sulfate reaction. The combination of chemical reaction and leaching of cementitious and degradation products appears to have made these grouts more permeable, so that the grout could act as a drainage path rather than a barrier. This challenges the typical assumption that the grout acts as an impermeable barrier.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper examines the sources of uncertainly in models used to predict vibration from underground railways. It will become clear from this presentation that by varying parameters by a small amount, consistent with uncertainties in measured data, the predicted vibration levels vary significantly, often by more than 10dB. This error cannot be forecast. Small changes made to soil parameters (Compressive and Shear Wave velocities and density), to slab bending stiffness and mass and to the measurement position give rise to changes in vibration levels of more than lOdB. So if 10dB prediction error results from small uncertainties in soil parameters and measurement position it cannot be sensible to rely on prediction models for accuracy better than 10dB. The presentation will demonstrate in real time the use of the new - and freely-available - PiP software for calculating vibration from railway tunnels in real time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The behaviour of cast-iron tunnel segments used in London Underground tunnels was investigated using the 3-D finite element (FE) method. A numerical model of the structural details of cast-iron segmental joints such as bolts, panel and flanges was developed and its performance was validated against a set of full-scale tests. Using the verified model, the influence of structural features such as caulking groove and bolt pretension was examined for both rotational and shear loading conditions. Since such detailed modelling of bolts increases the computational time when a full scale segmental tunnel is analysed, it is proposed to replace the bolt model to a set of spring models. The parameters for the bolt-spring models, which consider the geometry and material properties of the bolt, are proposed. The performance of the combined bolt-spring and solid segmental models are evaluated against a more conventional shell-spring model. © 2014 Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Underground structures constitute crucial components of the transportation networks. Considering their significance for modern societies, their proper seismic design is of great importance. However, this design may become very tricky, accounting of the lack of knowledge regarding their seismic behavior. Several issues that are significantly affecting this behavior (i.e. earth pressures on the structure, seismic shear stresses around the structure, complex deformation modes for rectangular structures during shaking etc.) are still open. The problem is wider for the non-circular (i.e. rectangular) structures, were the soilstructure interaction effects are expected to be maximized. The paper presents representative experimental results from a test case of a series of dynamic centrifuge tests that were performed on rectangular tunnels embedded in dry sand. The tests were carried out at the centrifuge facility of the University of Cambridge, within the Transnational Task of the SERIES EU research program. The presented test case is also numerically simulated and studied. Preliminary full dynamic time history analyses of the coupled soil-tunnel system are performed, using ABAQUS. Soil non-linearity and soil-structure interaction are modeled, following relevant specifications for underground structures and tunnels. Numerical predictions are compared to experimental results and discussed. Based on this comprehensive experimental and numerical study, the seismic behavior of rectangular embedded structures is better understood and modeled, consisting an important step in the development of appropriate specifications for the seismic design of rectangular shallow tunnels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the central part of the Delft railway tunnel project, an underground railway station is being built at very close distance to the existing station building, which is still in operation. Although elaborate sensitivity analyses were made, some unforeseen deformations were encountered during the first phases of the execution process. Especially the installation of temporary sheet pile walls as well as the installation of a huge amount of grout anchor piles resulted in deformations exceeding the predicted final deformations as well as the boundary values defined by a level I limiting tensile strain method (LTSM) approach. In order to ensure the execution process, supplementary analyses were made to predict future deformations, and this for multiple cross sections. These deformations were implemented into a finite element model of the masonry of the building in order to define probable crack formation. This Level II LTSM approach made it possible to increase the initially foreseen deformation criteria and the continuation of the works. Design steps, design models and monitoring results will be explained within this paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

© Springer International Publishing Switzerland 2015. Making sound asset management decisions, such as whether to replace or maintain an ageing underground water pipe, are critical to ensure that organisations maximise the performance of their assets. These decisions are only as good as the data that supports them, and hence many asset management organisations are in desperate need to improve the quality of their data. This chapter reviews the key academic research on data quality (DQ) and Information Quality (IQ) (used interchangeably in this chapter) in asset management, combines this with the current DQ problems faced by asset management organisations in various business sectors, and presents a classification of the most important DQ problems that need to be tackled by asset management organisations. In this research, eleven semi structured interviews were carried out with asset management professionals in a range of business sectors in the UK. The problems described in the academic literature were cross checked against the problems found in industry. In order to support asset management professionals in solving these problems, we categorised them into seven different DQ dimensions, used in the academic literature, so that it is clear how these problems fit within the standard frameworks for assessing and improving data quality. Asset management professionals can therefore now use these frameworks to underpin their DQ improvement initiatives while focussing on the most critical DQ problems.